
TDT4290|Customer Driven Project

Group 10

Gard Drag-Erlandsen
Jesper Elverum
Eli Fjellbirkeland Johannesen
Johan Otto Munkeby
Erik Salvesen
Sara Sveen

Digital Havn | Norkart

Department of Computer Science

Trondheim | Autumn 2023

Supervisor
Letizia Jaccheri

Executive Summary

Several Norwegian ports and companies have created a mutual project called ”Digital Havn” which

aims to digitalize the infrastructure related to port management. This is due to outdated systems

and little progress over the last decades. The team became part of this project through the course

TDT4290 - Customer Driven Project at NTNU, with the customer Norkart.

The objective for our project was to create a web based map client for port management, and

make it as user friendly as possible. This was due to the existence of similar systems that were too

complicated for the average user.

We conducted an agile development process inspired by Scrum and Extreme Programming, with

five sprints over 12 weeks. The creation of issues and criteria was mainly based on three user

interviews held during sprint 2 and 3. The team focused on implementing sustainable software,

and reflected upon diversity and the use of artificial intelligence in the project.

The team created a prototype of a web based map client that fulfilled the customers criteria.

The final product can be viewed (here) and the source code for the prototype can be accessed

(here). The report describes the development process of the web based map client, and grounds

the decisions made.

In general our team dynamic was strong throughout the project, and both the team and the

customer were very satisfied with the final product. For future work the inclusion of a 3D-based

map client using depth data would increase the functional usability of the system.

Trondheim - Autumn 2023

https://folk.ntnu.no/eriksalv/TDT4290-leaflet-client/
https://github.com/digitalhavn/prototype-redigeringsklient-ngis

Table of Contents

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Overall context . 1

1.2 Motivation . 1

1.3 Demands . 2

1.4 Results . 2

1.5 Resources . 2

2 Planning 2

2.1 Project Schedule . 2

2.2 Team Organization . 4

2.3 Tools and Infrastructure . 5

2.3.1 Communication . 5

2.3.2 Code Repository and Coordination . 6

2.3.3 Coding . 6

2.3.4 Common workspace . 6

2.4 Quality Assurance . 6

2.4.1 Response time . 6

2.4.2 Routines . 7

2.4.3 Templates and Standards . 8

2.5 Risk Management . 8

2.6 Effort Registration . 9

3 Problem Space and Solution Space 11

3.1 Problem space and business goals . 11

3.2 Data source, ownership, and IPR . 11

3.3 Goals and limitations for the student project . 11

3.4 Existing Solutions . 12

3.5 Desired Solution . 12

3.6 Evaluation criteria . 12

3.7 Market investigations . 12

3.7.1 Interview 1: Kartverket . 12

3.7.2 Interview 2: Port of Kristiansand . 13

3.7.3 Interview 3: Port of Arendal . 13

3.8 Technological solution . 13

3.8.1 Leaflet . 14

iii

https://leafletjs.com/

3.8.2 NGIS-OpenAPI . 14

3.8.3 Proxy . 14

3.8.4 TypeScript . 14

3.8.5 Vite . 15

4 Development Methodology 15

4.1 Gitflow . 15

4.1.1 How We Implemented Gitflow and Its Benefits 15

4.1.2 Choosing Gitflow . 15

4.2 Scrum . 16

4.2.1 Why Scrum? . 16

4.2.2 Drawbacks of Scrum . 16

4.2.3 Product Backlog . 16

4.2.4 Sprints and Sprint Planning . 17

4.2.5 Time Estimation . 17

4.2.6 Daily Scrum . 17

4.2.7 Scrum Master . 18

4.2.8 Sprint Review . 18

4.2.9 Sprint Retrospective . 18

4.3 Kanban Board . 18

4.4 Why Kanban? . 19

4.5 Extreme Programming . 19

4.6 Extreme Programming Practices . 19

4.6.1 Why Extreme Programming . 20

5 Innovation 20

5.1 Sustainability . 21

5.1.1 Focus within the project . 21

5.1.2 Social sustainability . 21

5.1.3 Technical sustainability . 21

5.1.4 Economical sustainability . 22

5.1.5 Environmental sustainability . 22

5.2 Diversity . 22

5.2.1 Diversity in the process: Team dynamics . 22

5.2.2 Diversity in the Product: Usability . 23

5.3 Artificial Intelligence . 23

5.3.1 Customer demands . 23

5.3.2 Usage of AI tools . 23

6 Requirements Specification 24

iv

https://github.com/kartverket/NGIS-OpenAPI
https://www.typescriptlang.org/
https://vitejs.dev/

6.1 Functional Requirements . 24

6.2 Non-functional requirements . 25

6.2.1 Usability . 25

6.2.2 Modifiability . 25

6.2.3 Security . 25

7 Architecture 26

7.1 Architectural Tactics and Patterns . 26

7.1.1 Tactics . 26

7.1.2 Patterns . 26

7.2 Architectural Views . 27

7.2.1 Logical View . 27

7.2.2 Process View . 28

7.2.3 Development View . 29

7.2.4 Physical View . 29

7.3 Issues . 30

8 Sprints 30

8.1 Sprint 1 - Design . 31

8.1.1 Sprint 1 Planning . 31

8.1.2 Sprint 1 Implementation . 31

8.1.3 Sprint 1 Review . 32

8.2 Sprint 2 - Create Map Client . 32

8.2.1 Sprint 2 Planning . 32

8.2.2 Sprint 2 Implementation . 33

8.2.3 Sprint 2 Review . 33

8.3 Sprint 3 - Edit functionality on properties . 33

8.3.1 Sprint 3 Planning . 34

8.3.2 Sprint 3 Implementation . 34

8.3.3 Sprint 3 Review . 34

8.4 Sprint 4 - Edit functionality on geometries . 35

8.4.1 Sprint 4 Planning . 35

8.4.2 Sprint 4 Implementation . 35

8.4.3 Sprint 4 Review . 36

8.5 Sprint 5 - Finalize the project . 37

8.5.1 Sprint 5 Planning . 37

8.5.2 Sprint 5 Implementation . 37

8.5.3 Sprint 5 Review . 38

9 Security 38

v

9.1 Understanding the Business Context . 39

9.2 Risk identification, evaluation and mitigation strategy 39

9.2.1 Application design . 40

9.2.2 Potential attackers . 40

9.2.3 Abuse cases . 40

9.2.4 Identification and ranking of risks . 41

9.3 Fixes and validation . 43

10 Testing 43

10.1 Exploratory testing . 43

10.2 Unit testing . 44

10.3 Acceptance testing . 44

10.4 Usability testing . 44

11 Internal and External Documentation 45

11.1 Internal documentation . 45

11.2 External documentation . 45

12 Self-Evaluation 46

12.1 Working Together as a Team . 46

12.2 The Work We Are Proud of . 46

12.3 Reflecting on Project Challenges . 47

12.4 The Customer . 47

12.5 The Project Assignment . 47

12.6 The Supervisor . 47

12.7 Future work . 48

12.8 Suggestions for Improvement . 48

References 50

A Project goals as presented by the customer 53

B Installation guide 53

C User manual 54

C.1 Start screen . 54

C.2 Display data layers . 55

C.3 Display and edit feature details . 56

C.4 Delete a feature . 57

C.5 Create a new feature . 57

C.6 Move features around . 58

vi

C.7 Configuration . 59

D Decision log 59

E Meeting templates 62

E.1 Student meetings . 62

E.2 Supervisor meetings . 63

E.3 Customer meetings . 64

E.4 Usability test meetings . 65

F Project assignment 66

G Group contract 73

H Results From Sprint Retrospectives 76

H.1 Sprint 1 . 76

H.2 Sprint 2 . 77

H.3 Sprint 3 . 78

H.4 Sprint 4 . 79

H.5 Sprint 5 . 80

List of Figures

1 Gantt diagram illustrating the project schedule . 3

2 The weekly schedule displaying meeting times . 4

3 Illustrating total hours spent on each activity . 10

4 Shows the total hours spent on each activity for each sprint 10

5 Simple overview of the system . 27

6 Logic view: diagram for the client-side of the system 28

7 Process view: sequence diagram for creating a new feature 29

8 Development view of the system . 29

9 Physical view of the system . 30

10 The overall goal of the bigger project this project is a part of 53

11 The project plan as proposed by the customer . 53

12 Start screen . 55

13 Display data . 56

14 Feature details . 57

15 Modal for creating a new feature . 58

16 When inside edit mode, features become draggable, and two new buttons are added

to the header to confirm or undo changes to the map 59

17 Template for meetings held between students on mondays and fridays 62

18 Template for meetings held between students and supervisor on wednesdays 63

vii

19 Template for meetings held between students and Norkart 64

20 Template for usability test meetings held between students and different ports . . . 65

21 Group contract written and signed at the start of the project. Part 1 73

22 Group contract. Part 2 . 74

23 Group contract. Part 3 . 75

24 Results from Retrospective Sprint 1: Liked and Learnt 76

25 Results from Retrospective Sprint 1: Lacked and Longed for 76

26 Results from Retrospective Sprint 2: Liked and Learnt 77

27 Results from Retrospective Sprint 2: Lacked and Longed for 77

28 Results from Retrospective Sprint 3: Liked and Learnt 78

29 Results from Retrospective Sprint 3: Lacked and Longed for 78

30 Results from Retrospective Sprint 4: Liked and Learnt 79

31 Results from Retrospective Sprint 4: Lacked and Longed for 79

32 Results from Retrospective Sprint 5: Liked and Learnt 80

33 Results from Retrospective Sprint 5: Lacked and Longed for 80

List of Tables

1 Distribution of roles on the team . 5

2 Task Timeframes . 7

3 Risk Assessment Table . 9

4 Business Goals . 11

5 Functional requirements for the project . 24

6 Sprint 1 Backlog . 31

7 Sprint 2 Backlog . 33

8 Sprint 3 Backlog . 34

9 Sprint 4 Backlog . 36

10 Sprint 5 Backlog . 37

11 Business Assets . 39

12 Abuse cases . 41

13 Business Risks . 42

14 Technical Risks . 42

15 Implemented Solutions and Their Validation Methods and Outcomes 43

16 Configuration options . 59

17 Decision log . 59

viii

1 Introduction

In our project, we addressed the problem of digitalizing Norwegian ports. Our specific focus was

on creating a more user-friendly product than existing solutions, to better cater to a wider and

more diverse range of end-users. To address this, we developed a comprehensive prototype of a

web application. This prototype was refined through multiple stages, including three usability tests

and in-depth user interviews, and ongoing communication with end-users from various Norwegian

ports.

The culmination of our efforts is a final product that leverages Leaflet.js to provide an interactive

map. This map integrates geographical port data from NGIS-OpenAPI, offering an intuitive and

user-centric interface for accessing and editing critical port information.

The project was undertaken as part of the TDT4290 - Customer Driven Project course at NTNU

Trondheim. The course challenges students to leverage their accumulated knowledge within soft-

ware development, methodologies, and architecture to carry out a project for a professional cus-

tomer, and thereby offering a practical insight into the software development industry.

1.1 Overall context

The project’s customer, Norkart, is at the forefront of municipal engineering, mapping, and prop-

erty information in Norway. With access to the country’s expansive geographic information data

warehouse, Norkart plays a pivotal role in the ongoing digitalization efforts of Norwegian ports

(Norkart, 2023). Key examples are their engagement with the Port of Oslo and Kartverket in

initiatives like ”Norsk digital havneinfrastruktur” and ”Digital Havn.” This included a central

role in the work on port data standardization, which is crucial for the infrastructure required to

digitalize Norwegian ports. The goals of these projects are twofold: to enhance efficiency in port

operations’ and to guide these operations towards greater environmental sustainability. This is

achieved through comprehensive mapping, digitalization, and the development of a shared digital

framework across the Ports of Norway (Oslo Havn, 2023).

In this context, Norkart has partnered with us, students enrolled in the TDT4290 course. This

collaboration presents a significant opportunity: if we, as part of Norkart’s team, can successfully

demonstrate a prototype that not only improves user-friendliness but also appeals to a wider

range of end-users, it could potentially unlock additional funding. This funding would enable

the further development of a more comprehensive and sophisticated product, advancing Norkart’s

digital transformation efforts in the Norwegian port sector.

1.2 Motivation

The project offered our team a unique opportunity to gain practical experience in addressing a

technical challenge with tangible real-world implications for a significant number of end-users.

Every team member felt a personal connection to the project, appreciating the significance and

practicality of digitizing Norwegian ports. This venture also allowed us to enhance our knowledge

of geospatial technologies and tools — areas previously unfamiliar to us. Such experiences could be

beneficial for each team member in future professional endeavors as it serves as an introduction to

professional project management. Additionally, Norkart’s intention to not only use, but potentially

improve our product further motivated us to create a solution of substantial value.

1

1.3 Demands

At the onset of the project, the customer outlined several key requirements. The primary feature

was to make the product user-friendly, with an emphasis on creating an interface that was intuitive

and easy to navigate. The project’s goal was to develop a prototype, which meant that the

initial stages did not heavily prioritize aspects like quality or security. Despite this, the customer

specifically requested thorough documentation of the product. This was to ensure that the product

would be easily comprehensible and could be effectively enhanced and expanded in the future.

1.4 Results

The team effectively developed a fully functional web application that met the initial customer

requirements, and surpassed expectations for the prototype in some aspects. This achievement

was accompanied by comprehensive documentation of the application.

In addition, the team helped highlight the importance and relevance of this application to the

geospatial community in Norway. This was achieved by delivering a presentation and actively par-

ticipating at FOSS4G, a seminar focused on open-source geospatial software. The impact of our

team’s work was further magnified during a technical demonstration at a quarterly board meet-

ing. This demonstration played a crucial role in the decision-making process regarding additional

funding for the project. The application is now operational and accessible via the link provided in

the subsequent section.

1.5 Resources

• Link to Final Presentation: Slides

• Link to FOSS4G Presentation: Slides

• Link to source code: Gtihub

• Link to product: https://folk.ntnu.no/eriksalv/TDT4290-leaflet-client/

• Link to design prototype: Figma

2 Planning

Planning plays a pivotal role in the project’s inception, ensuring not only customer satisfaction

but also the smooth progression of product development. Effective planning enhances efficiency,

mitigates risks, and establishes robust routines (Arend et al., 2017). As elaborated in Section 4.2.1

Why Scrum?, our team adheres to the Scrum methodology, underscoring the significance of well-

defined routines. In our Scrum implementation, we delineated sprint timelines, with the specifics

of each sprint mapped out during dedicated sprint planning meetings.

This section summarizes the project schedule, roles, tools, and communication infrastructure. It

also outlines our approach to quality assurance and risk management. All agreements on organi-

zational aspects and guiding principles from the planning phase are formally documented in the

team contract, accessible in Appendix G.

2.1 Project Schedule

During the initial planning stage, our team segmented the project into five distinct sprint phases,

aligning with the Scrum development methodology outlined in Section 4. These phases have

2

https://studntnu-my.sharepoint.com/:p:/g/personal/elifjoh_ntnu_no/EepOqpKdcGxNv1Wr2c8f9BUB17sJyXwpKngLlFd5SRqcSw?e=zcvJaT
https://studntnu-my.sharepoint.com/:p:/g/personal/elifjoh_ntnu_no/EUSwJPnt4DhOjMIeE9GWdY0BVHmbyCr4vhR2fd21YiQsfw?e=Xe1RuH
https://github.com/digitalhavn/prototype-redigeringsklient-ngis
https://folk.ntnu.no/eriksalv/TDT4290-leaflet-client/
https://www.figma.com/file/XcQRHuxuL4SIzqSrpYczYU/Utkast-kartklient?type=design&node-id=0%3A1&mode=design&t=l5oWxy8TRdpae45B-1

been graphically represented in Figure 1. Our efforts were directed toward achieving specific

sprint goals within each sprint, as articulated in Section 8. We organized the tasks and activities,

and clarified the goal for each sprint during dedicated sprint planning meetings. To enhance the

project’s structure and coordination, the team established regular meeting times, to keep up with

the Project Schedule and goals.

Figure 1: Gantt diagram illustrating the project schedule

Monday team meetings, from 09:15 to 14:00, prioritized full attendance in the first hour. Members

had flexibility to leave for other commitments, but it was encouraged to stay until 14:00 to maximize

collaboration, and this was generally the practice. This protocol also applied to Friday meetings,

encouraging group engagement despite members’ enrollment in other courses.

Wednesday supervisor meetings were mandatory for all team members while biweekly group leader

meetings were exclusively attended by the project manager. In the team lead’s absence, another

member would attend.

The customer meetings were initially slotted for Thursdays from 10:00 to 11:00, but were usually

rescheduled to accommodate the customer. Figure 2 outlines the team’s meetings during a regular

week of the project.

3

Figure 2: The weekly schedule displaying meeting times

2.2 Team Organization

Table 1 illustrates the team organization and assigned roles. In addition to the roles outlined in

the compendium (Jaccheri, 2023), we introduced some additional roles we saw fit. We assigned the

roles according to prior expertise and individual preferences, but also had diversity in mind (see

Section 5.2.1).

It’s important to stress that even though specific team members were assigned to different tasks,

the group collectively could contribute when needed. While an individual is assigned to a task,

they are not solely responsible for its execution. For example, the report manager ensures the

report is effectively written but does not write it independently. Effective delegation and attention

to deadlines are crucial in this context.

4

Roles Responsibilities Assignee

Project Manager

- Organize and lead meetings.

- Attend group leader meetings, and inform about decisions

and updates made at the meeting.

- Assign and monitor tasks.

Sara

Scrum Master

- Uphold Scrum methodology.

- Lead scrums, planning, retrospectives.

- Update backlog and Kanban board.

Erik

Tech Lead

- Distribute coding tasks.

- Make technology related decisions.

- Coaching other members on technologies.

Jesper

Quality Manager
- Oversee product and report quality.

- Ensure pre-defined standards are followed.
Gard

Report Manager
- Update and track report progress.

- Align with reporting deadlines.
Johan

Lead architect
- Make and document architectural decisions.

- Direct design and usability test preparations.
Eli

UX manager
- Main responsibility for Figma prototype and mockups.

- Direct usability test preparations.
Eli

Documentation

Manager

- Main responsibility for code documentation and README

on Github.

- Ensure document quality and organization (e.g. for meeting

documents).

Erik

Developer

- Coding, testing, and code review.

- Log time for tasks.

- Update progress on user story tasks.

Everyone

AI and Sustainabil-

ity Manager

- Run AI and sustainability workshops.

- Contribute to report sections on AI and sustainability.
Johan

Diversity Manager
- Lead diversity workshops.

- Manage diversity content in the report.
Sara

Security Manager
- Focus on security aspects.

- Facilitate security-related discussions.
Gard

Table 1: Distribution of roles on the team

2.3 Tools and Infrastructure

A well-organized product relies on a streamlined workflow, where tools refer to digital resources

facilitating software development (Vaughan-Nichols, 2003). These tools form the team’s infrastruc-

ture, promoting a healthy development environment. Emphasizing efficiency, we carefully selected

a concise set of tools during the planning phase. This was based on our familiarity with the tools

and their unique qualities. Each tool served a specific purpose, contributing to overall organization

and maintaining a well-defined structure throughout development.

2.3.1 Communication

The team primarily used Slack for communication, creating specific channels for organized mes-

saging and information retrieval. For quick, everyday messages, we used Messenger, reserving it

5

for brief notifications and less critical topics. In contrast, Slack was designated for more significant

and lasting information.

For customer interactions, we chose Microsoft Teams, aligning with the customer’s existing usage.

Teams also facilitated screen sharing during meetings, accommodating the absence of monitors or

widescreens in our meeting spaces. Additionally, it served as the platform for virtual meetings to

include any team members unable to attend in person.

2.3.2 Code Repository and Coordination

GitHub was our platform of choice for software development, as suggested by the customer. It

was used for repository management, issue tracking, code review, and workflow monitoring. The

customer had already set up a GitHub repository and recommended using GitHub Projects for

workflow tracking through a Kanban board. Github streamlined task delegation and automatically

deleted feature branches on task completion.

2.3.3 Coding

Visual Studio Code (VSCode) was the unanimous choice for code editing across the team. Fa-

miliarity with VSCode among all members facilitated debugging, knowledge sharing, and pair

programming. Additionally, VSCode is well suited for development using JavaScript/TypeScript,

and has an extensive plugin library for specific functionalities that may become useful.

2.3.4 Common workspace

Google Drive was our central hub for document storage. We used Google Docs for notes and

agendas, and Google Sheets for time tracking. Both the supervisor and customer had access

to these documents for review and feedback. For the final report, we opted for LaTeX using

Overleaf due to its capabilities in managing complex documents, allowing easy section tracking

and collaborative editing.

2.4 Quality Assurance

Quality Assurance (QA) is a proactive strategy that plays a pivotal role in upholding product

quality during development. It ensures alignment with customer expectations and adheres to

international standards such as ISO 9126 (ISO 9001:2015 , 2015). A thorough grasp of QA practices

from both the developer’s and customer’s viewpoints is key to fostering collaborative success, paving

the way for successful project outcomes (Westland, 2023). To guarantee the quality of our product,

we implemented several measures throughout our project, as outlined below.

2.4.1 Response time

Timely responses in QA are crucial for project success. They maintain project momentum, prevent

delays, and ensure deadlines are met. Swift responses enhance customer satisfaction and help

identify and resolve issues early, reducing project risks. They foster effective collaboration, reduce

uncertainty, and support quality control. After discussing with the customer we agreed on the

response times presented in Table 2.

6

Task Timeframe

Approval of agenda, including questions for customer meeting 24 hours

Approval of minutes of customer meeting 24 hours

Answer to a question in Teams 24 hours

Other inquiries via Teams or email 24 hours

Feedback on phase documents the customer would like for review 48 hours

Approval of phase documents 48 hours

Table 2: Task Timeframes

2.4.2 Routines

Routines in QA for producing high-quality work is vital for maintaining consistency, meet customer

expectations, complying with legal requirements, providing thorough documentation, and ensuring

effective code review and version control processes. These practices collectively contribute to

the overall success and quality of a software development project (Dönmez et al., 2016). Our

core routines and pragmatic standards are detailed below, and are also available in the project’s

CONTRIBUTING.md.

Coding Style:

• Use lowerCamelCase for variables, functions, and filenames.

• Write global constants in CONSTANT CASE.

• In TypeScript, prefer ’let’ or ’const’ over ’var’.

• Favor string templates over concatenation (e.g., const greeting = ‘Hello {name}!’;).

• Install Prettier and ESLint extensions in Visual Studio Code.

• Adhere to ESLint and Prettier rules (see .eslintrc.json and .prettierrc).

• Follow TypeScript compiler rules for program correctness (see tsconfig.json).

Code review:

Our team’s code quality is maintained through a code review process. Every pull request with

code changes must be reviewed by at least one other team member. The reviewer is required to

provide detailed, actionable feedback directly on the pull request, highlighting specific changes

or improvements needed for approval. Additionally, referencing specific code snippets in the pull

request is encouraged to ensure clear and precise feedback. This approach ensures that every code

modification is carefully vetted and meets our quality standards.

Commits: Our code management process emphasizes clarity and organization. We utilize con-

ventional commits, with ’feat’ denoting feature additions, ’docs’ for documentation updates, and

’fix’ for bug fixes. This standardized approach helps in categorizing changes effectively. Commit

messages should be short and concise, capturing the essence of the change without unnecessary

details. Additionally, frequent commits are encouraged to maintain a clear and granular history,

aiding in easier tracking and understanding of the project’s evolution.

Workflow:

7

https://github.com/digitalhavn/prototype-redigeringsklient-ngis/blob/develop/CONTRIBUTING.md
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/blob/develop/leaflet-client/.eslintrc.json
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/blob/develop/leaflet-client/.prettierrc
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/blob/develop/leaflet-client/tsconfig.json

1. Create a new feature branch for every issue, based on the ’develop’ branch, with the branch

name id-issue-title. You can use the ”create branch” button on each issue to do this easily.

Strive to keep branches small, ideally with fewer than 200 lines changed.

2. Always create a pull request before merging a branch into the ’develop’ branch for code

review (CR).

3. Ensure that the pull request is only merged when it is approved by at least one reviewer.

Avoid creating pull requests directly from a feature branch to the ’main’ branch.

4. At the end of a sprint, merge the ’develop’ branch into the ’main’ branch.

5. Create a release after merging to ’main’.

Issues:

• Ensure detailed descriptions for each issue for clarity and future reference.

• Use relevant labels to categorize issues: ’feature’, ’documentation’, ’bug’, ’research’.

• Assign priority and size to issues with existing labels.

• Assign issues to developers and move to ’In progress’ on the Kanban board before starting.

• For review-ready issues, transition to ’In review’ and assign reviewers.

• Move issues to ’Done’ once the corresponding pull request is merged into ’develop’.

• Place dependent issues in ’Blocked’, specifying the blocking issue.

• Use ’Ready’ for planned but not yet started issues in the current sprint.

2.4.3 Templates and Standards

Templates and standards in quality assurance streamline processes, reduce errors, improve clar-

ity, and enhance overall project efficiency and quality. They are essential tools for maintaining

consistency and reducing stress within the project team. All the templates used are available in

Appendix E.

2.5 Risk Management

Risk assessment is a proactive approach that plays a vital role in identifying, addressing, and

mitigating potential risks within a project. It entails systematically evaluating potential risks,

gauging their likely impact and severity, and developing strategies to either reduce their likelihood

or mitigate their consequences (Anthony Jnr et al., 2016, 31). Early detection of these risks is

key to minimizing long-term costs and is essential in ensuring the project meets the specified

requirements outlined in Section 6 Requirements Specification (Han & Huang, 2007, 32).

In software development, unexpected issues can arise from internal team actions and external

factors. To address these, we conducted a comprehensive risk analysis, identifying challenges

related to team dynamics and technical hurdles. Relying on past experiences and the challenge of

client engagement, we documented potential risks and mitigation strategies in Table 3, assessing

each based on likelihood, potential impact, and overall risk.

8

Our risk assessment underscored the crucial role of effective team communication, emphasizing the

importance of alignment on project progress. Additionally, maintaining communication with the

client was identified as a vital measure in preventing many of the identified risks.

Table 3: Risk Assessment Table

(I = Impact, P = Probability, R = Total Risk, H = High, M = Medium, L = Low)

ID Area Risk

Factor

Consequence I P R Strategy Responsible

R1 Team Inadequate

internal

communica-

tion

Redundant work,

delays, technical

debt

H M H Slack updates,

daily scrums,

GitHub project

tracking

Scrum

master

R2 Develop-

ment

Neglecting

code qual-

ity/testing

Reduced

maintainability,

technical debt

H M H Enforce testing

standards, quality

oversight

Quality

manager

R3 Report Overemphasis

on

functionality

Rushed,

low-quality

reporting

H M H Parallel report

and development

work

Quality

manager

R4 Team Inadequate

member

contribution

Insufficient

progress, team

friction

M M M Daily check-ins Team leader,

all members

R5 Customer Ineffective

customer

communica-

tion

Misaligned

expectations,

project

discrepancies

H L M Weekly meetings,

customer

inclusion in

development

Team leader

R6 Development Unclear

project

scope

Incomplete

functionality

M M M Detailed sprint

planning, clear

customer demand

All

R7 Team Member

absences

Increased

workload for

others

M H M Remote work

support, early

leave

communication

All

R8 Customer Customer

indecision

during

development

Wasted work,

increased

workload

M L L Ongoing customer

dialogue during

development

Team leader,

Scrum

master

R9 Team Permanent

team

member

departure

Higher workload,

knowledge loss,

role redistribution

M L L Comprehensive

documentation,

shared

responsibilities

All, Scrum

master

2.6 Effort Registration

Effort registration is crucial in project management for tracking progress, managing resources,

controlling costs, and meeting goals and deadlines. It aids in informed decision-making throughout

the project life-cycle Heijstek & Chaudron, 2008.

We used an Excel spreadsheet for recording work, categorizing activities into Meeting, Research,

Coding, Administrative, Report, Design, and Lectures. After Sprint 5, we created a pie chart

9

(Figure 3) to visualize time distribution across these activities, excluding time outside sprints

1 to 5. This analysis revealed a significant allocation of time to coding, report writing, and

meetings. Despite a desire for more coding time, the quality of code benefited from extensive

meeting discussions, resulting in a satisfactory balance of time allocation.

Figure 3: Illustrating total hours spent on each activity

Further, we analyzed time spent per activity for each sprint using a bar chart (Figure 4). This

showed a decline in Research and a consistent increase in Coding from sprint 2 to 5, reflecting our

learning curve and growing efficiency. The time dedicated to the report also increased progressively,

indicating a focused advancement in our project work.

Figure 4: Shows the total hours spent on each activity for each sprint

10

3 Problem Space and Solution Space

This section describes the problem and solution space discovered through preliminary research,

the introductory presentation by Norkart and subsequent user interviews with industry experts.

3.1 Problem space and business goals

Our customer, Norkart, plays a significant role in the ”Digital havn” project, which involves cre-

ating an infrastructure and standard for port data. This laid the groundwork for our task to

develop a web-based map client for visualizing and updating this data. The customer aims for

reusability across all Norwegian ports, easy integration into port websites, and user-friendliness

without requiring GIS expertise. These goals were outlined in the initial customer meeting and

are summarized in Figure 10 and Table 4.

Table 4: Business Goals

Business Goals

ID Description

BG1 User friendly interface

BG2 Visualize collected geographical port data on a web based map

BG3 Users should be able to edit properties and geometry of port data in an easy way

BG4 System should require minimal technical skills and GIS-background

BG5 The map client should be embeddable in a port’s website

BG6 It should be easy to continue development on the project in the future

BG7 Reliable service

BG8 Accessible service

BG9 Trustworthy and secure source of data

3.2 Data source, ownership, and IPR

The work on digitalizing Norwegian ports started by creating a standardization of different types

of port objects, known as the Havnedata standard. This allowed ports to manage their data in

a system called NGIS. NGIS is a platform maintained by Kartverket that allows management of

geographical data across organizations and software in a central database. The NGIS platform can

be interacted with through an API such as the REST-based NGIS-OpenAPI, which is what we

used for our project.

In NGIS, data ownership is specific to each dataset, and external access requires the data owner’s

permission. Although our project’s code is open-source, we lack rights to the data. To overcome

this, Norkart and Kartverket provided us test database credentials for development and exter-

nal use. Additionally, NGIS data can be viewed as map images via WMS services, such as the

Havnedata WMS, without authorization.

3.3 Goals and limitations for the student project

During the initial presentation, the customer set specific subgoals, detailed in Figure 11 in Appendix

A. The primary focus was on a 2D web-based map client, covered in the first three subgoals. The

11

https://www.kartverket.no/geodataarbeid/havnedata
https://www.kartverket.no/geodataarbeid/ngis
https://kartkatalog.geonorge.no/Metadata/6e0d1be6-0ea4-4d11-aaf3-76ccec945d65

last three goals, involving implementing geometry editing, a 3D map client, and NGIS-OpenAPI

security review, were optional. Norkart requested omitting user authentication to save time. Ad-

ditionally, editing polygon shapes was deemed challenging due to ”shared geometry” issues and

was removed from the project’s scope.

3.4 Existing Solutions

There are some existing solutions, such as plugins for QGIS - a free and open source desktop

application for GIS - and Grieg Connect, that partially meet the outlined business requirements.

However, user interviews revealed, as detailed in Section 3.7, that these systems are often too

complex for many end users in the industry. Consequently, administrators in Norwegian ports

resort to more primitive methods like Excel spreadsheets, and some larger ports have developed

their own systems. This complexity prevents information sharing between ports and potential

clients.

3.5 Desired Solution

The goal of the proposed solution is to simplify data display and updates in ports. It aims to

provide port workers with an intuitive map client tailored to their needs. The system is primarily

designed for port management professionals, but since it is open source it is free to use by private

users. The key objective has been to lower the usage barrier, ensuring the system is accessible and

user-friendly, thereby attracting a wider user base.

3.6 Evaluation criteria

The customer provided evaluation criteria in the form of the main business goals listed in Table 4.

For the technological solution the customer strongly recommended using Leaflet.js for the frontend

part of the 2D map client due to its simple and editable nature. The customer conveyed that

further criteria could be developed in compliance with user interviews and during the exploration

of necessary features for the system.

3.7 Market investigations

Following the project’s initial presentation the team members did research related to the project

and tried to comprehend how the end product should function. From this research the team

recognized the need to understand real-world use cases and user priorities. To get this information

we conducted three hour long user interviews, one during sprint 2 and two during sprint 3, with

representatives from Kartverket, Port of Kristiansand, and Port of Arendal, all men aged between

45-60. These participants, provided by the customer, also underwent usability testing, detailed in

Section 10.4.

3.7.1 Interview 1: Kartverket

The first interview was with a representative from Kartverket on the 18th of September. At

this point in the development process the team still lacked some general understanding about the

project. The representative from Kartverket elaborated in more detail about the real-world issues

12

https://qgis.org/en/site/
https://griegconnect.com/no/

the project should solve, and the background for these issues. This clarification was extremely

valuable for producing new requirements, and founded a solid base for further development.

The most valuable takeaway from the interview was that the system had to be easy to use. This was

justified by the fact that most users of the system are older and have limited technical knowledge.

The system needed more intuitive navigation and buttons to function well. Our focus therefore

became more directed on creating a user friendly and easy to use system, rather than implementing

a lot of complicated features.

3.7.2 Interview 2: Port of Kristiansand

The second user interview was held with a representative from Port of Kristiansand on the 13th

of October. This interview was held during sprint 3, and the team had at this point developed a

more general understanding of the problem and solution space.

The representative was highly experienced with sea- and ship-related topics, due to his 40 year

long experience in the industry. He gave the team a historical view of the systems used in the

industry, and emphasized the importance of capturing data to update the current systems. The

data displayed in these systems have to be accurate, due to low margins related to keel-clearance

and navigation. The representative also emphasized that properties and data in these systems must

be quality checked before being added, but this should only be necessary for data that is highly

important. Simpler data points like fenders or bollards should be easy to edit. This conversation

uncovered the desire for a feature where the user can set the status of an object on the map. This

could prove to be an important feature to visualize broken or out-of-order objects.

3.7.3 Interview 3: Port of Arendal

The third user interview was held with a representative from Port of Arendal on the 16th of

October. The representative had 25 years of experience dealing with port management and data,

and was very interested in the project. The focus of the interview was to identify use cases for

the system. The representative imagined that updating the status of the objects in the port could

be helpful not only to larger ships, but also to private parties looking for the same information.

Another valuable request was to implement an edit-mode for the user. The idea was that the user

could make several changes, compared to a single change, to the map and then save the changes

when exiting edit-mode. The changes made to a map should also be added to a log, to identify

which user have altered information in the system. A comment field was also suggested to have a

dialogue with other coworkers.

The representative stressed the need for a toolbar list of individual map objects in the system,

highlighting its importance for ease of navigation, especially when objects are closely positioned.

Additionally, he underscored the significance of maintaining the system’s simplicity to accommo-

date the limited technical skills of end users. Simplifying the system would also facilitate broader

distribution, as it lowers the threshold for user qualifications, thereby enabling a wider user base.

3.8 Technological solution

In order to create a satisfying response to the needs of the desired solution, the team decided on

some key technologies that would be valuable to the development of the product.

13

3.8.1 Leaflet

Leaflet is an open-source JavaScript library for interactive maps that was strongly recommended

by Norkart. Its strengths lies in simplicity and performance, allowing developers to easily integrate

dynamic maps on their website. The support for GeoJSON and its extensive documentation made

it ideal for the scope of our project.

Since Leaflet has been at the center of the development, it is natural to mention how it could limit

the application. As the application needs to display large amounts of data, and Leaflet renders

these objects on the client-side, there is a need to limit the amount of data visible to the user. If

not, the application would run poorly on weaker computers. The final product is also dependent

on third-party packages that are plugins to the existing Leaflet functionality, meaning the project

is relying on these packages being maintained to work with future versions of Leaflet.

3.8.2 NGIS-OpenAPI

The application communicates with NGIS-OpenAPI in order to load and store geographical data.

The data retrieved from the API is given in GeoJSON format, making it compatible with Leaflet

without much modification. The API is also well documented, with clear information on the

available endpoints, and the parameters needed for a valid request. The validation schemas are

also sourced from the API, and are used in conjuncture with Ajv - an open source JSON schema

validator - to secure valid input from the user. This implementation makes the validation process

itself dynamic in terms of changes made to the schemas.

3.8.3 Proxy

Due to the issue of data ownership discussed in Section 3.2 and the exclusion of user authentication

from the project scope, a way was needed for users to access the data from NGIS without credentials

being leaked. Our solution for this issue was to create a proxy that communicates directly with

NGIS-OpenAPI through the provided credentials, and forwards the data to the frontend client,

without the API credentials ever being sent between the frontend and proxy.

We decided to create this proxy using Node.js and TypeScript to have have the same programming

language as the Leaflet map client. The express.js framework was also used, because it makes

writing web servers with Node.js easier, and we wanted to spend minimal time on the proxy

component.

3.8.4 TypeScript

TypeScript is a superset of JavaScript that adds static typing to the language, providing enhanced

tooling for developers. The decision to use Typescript in our project was due to the improved code

quality, maintainability, and the opportunity for early error detection over regular JavaScript.

By explicitly defining variable types and interfaces, Typescript enhances the predictability and

robustness of the codebase.

We decided not to use any framework such as React on top of TypeScript, as it was not seen as

necessary at the time. The lack of framework could pose some trouble as the application grows

in size however. Managing a large codebase without the organizational structures provided by a

framework can become a complex task, and lead to more overhead. On the other hand, using no

framework has its benefits in terms of better performance and more control.

14

https://leafletjs.com/
https://github.com/kartverket/NGIS-OpenAPI
https://ajv.js.org/
https://nodejs.org/en
https://expressjs.com/
https://www.typescriptlang.org/

3.8.5 Vite

Vite is a fast and efficient build tool for modern web development. Leveraging the power of ES

modules, Vite significantly speeds up the development process by offering fast cold server starts.

The efficient handling of dependencies and seamless integration with Typescript makes Vite a

suitable choice for our development environment.

By utilizing Vite, we aim to improve the project’s build speed, reduce development bottlenecks,

and provide a smoother experience for developers working on the codebase. The decision to incor-

porate Vite aligns with our commitment to leveraging cutting-edge tools that enhance developer

productivity

4 Development Methodology

Development methodologies are structured project management approaches for tasks like software

development. They ensure efficient planning, product quality, risk management, and collaboration.

The right development methodologies are chosen based on the project’s nature, and choosing the

right methodologies is a critical factor in software development (Sommerville, 2016). We adopted a

hybrid approach by integrating elements from various development methodologies, such as Gitflow,

Scrum, Kanban, and Extreme Programming.

4.1 Gitflow

In our project, we opted for the Gitflow branching model due to its suitability for our development

process. Gitflow is a Git branching framework that organizes work into distinct branches for

features, releases, and ongoing tasks (Atlassian, n.d.-a). This structure offers a well-organized

approach to version control, aligning closely with our project’s needs.

4.1.1 How We Implemented Gitflow and Its Benefits

At the core of Gitflow are two primary branches: main and develop. The main branch stores

the official release history, while develop serves as the integration point for new features before

their official release. This arrangement provides a clear and structured version control mechanism.

One of the standout features of Gitflow is its use of feature branches for the development of new

features and non-emergency bug fixes. These branches keep work separate from the main codebase

until it’s ready for integration, promoting a clean and organized development process.

When it’s time to prepare for a release, Gitflow facilitates this with release branches. These

branches are created from the current state of the develop branch, and after final preparations,

they are merged into both main and develop.

4.1.2 Choosing Gitflow

Gitflow, with its structured approach to version control and release management, was our choice

after careful evaluation. While it introduces some complexity and overhead, it aligns well with our

project’s feature and release management needs. Despite a learning curve, we believe Gitflow’s

benefits outweigh the challenges.

15

https://vitejs.dev/

It’s worth noting an alternative approach: trunk-based development. This model streamlines

merging directly into the main branch, fostering collaboration and enabling rapid iterations, crucial

for continuous integration and delivery (Atlassian, n.d.-b). Unlike Gitflow’s structured branches,

trunk-based development assumes the main branch is always stable.

4.2 Scrum

Scrum is an agile project management framework designed for flexible and iterative software de-

velopment. It operates on principles of transparency, inspection, and adaptation, dividing projects

into short sprints of one to four weeks. This approach prioritizes collaboration, adaptability, and

continuous improvement, making it ideal for projects with evolving requirements and a need for

frequent stakeholder feedback (Kniberg, 2007).

4.2.1 Why Scrum?

We selected Scrum for its industry recognition, adoption in software development, and team fa-

miliarity. The client’s preference for Scrum, as mentioned in the project assignment appendix

(section F), supported effective communication and teamwork. Scrum’s adaptability was key to

handling our project’s evolving needs, offering a customer-centric approach that contrasts with the

more rigid waterfall model (GeeksforGeeks, 2023). Regular customer engagement through Sprint

Reviews helped align the product with client expectations. Scrum’s structured meetings like daily

stand-ups and retrospectives ensured efficient communication and problem-solving within the team.

4.2.2 Drawbacks of Scrum

Despite Scrum’s benefits, it presents challenges such as the need for extensive team collaboration

and time commitment, which can be difficult with other obligations. Customer involvement, a

cornerstone of Scrum, can also be challenging but was advantageous in our case, as the customer

was actively involved, enhancing communication and project alignment.

4.2.3 Product Backlog

The product backlog is a central part of Scrum, which serves as a list of requirements, stories, and

features (Kniberg, 2007). We used Github’s issue system to create backlog items with the following

fields:

• ID: Unique identifier for each issue, added automatically by Github.

• Name: Short description explaining the issue’s content.

• Description: Longer, detailed description for clarity on the issue.

• Assignee: Tracks who is working on each issue.

• Labels: Tags for classifying the issue type (e.g., new feature, documentation, bug fix). Full

list available here.

• Priority: Assigns a level (Low, Medium, High, Urgent) to each issue for work prioritization.

• Size: Initial work estimate needed for issue resolution.

16

https://github.com/digitalhavn/prototype-redigeringsklient-ngis/labels

4.2.4 Sprints and Sprint Planning

During the project planning phase, we decided on five sprints, each lasting two weeks. This decision

was influenced by various factors, including allocating one week for the course kickoff and initial

planning, which set our timeline. We determined that one-week sprints were too short and anything

beyond two weeks too long for our needs. Allowing two weeks at the end for report writing and

presentation preparation, we had a ten-week window for development, fitting in five sprints. The

project schedule is detailed in Figure 1.

Before each sprint, we held efficient sprint planning meetings using GitHub Projects. These meet-

ings, kept under an hour, involved revisiting the sprint goal, creating new issues, and estimating

their scope and complexity to determine the sprint workload. We carefully selected issues for the

sprint backlog, considering the sprint’s goal and our capacity, and set milestones for each sprint to

track planned tasks. This structured approach ensured efficient teamwork and clear planning for

each sprint.

4.2.5 Time Estimation

We made a deliberate choice to use relative sizing, utilizing the predefined sizes available in GitHub

Projects. This was done for estimating the time required for tasks, as opposed to traditional

numeric values like the Planning Poker sequence. This decision was rooted in both our team’s

needs and preferences.

The adoption of words or labels such as Tiny, Small, Medium, and so on, offers several benefits

over specific numeric values. These labels are more accessible and less prone to confusion, as they

allow team members to intuitively understand the size of the task without needing to remember

precise numeric meanings.

However, relative sizing has drawbacks like potential imprecision, subjectivity, and challenges in

producing burndown charts. Given the project’s complexity and the need to grasp new concepts,

we prioritized simplicity in our estimations. Relative sizing aligned with our team’s learning curve

and project objectives.

4.2.6 Daily Scrum

Acknowledging our roles as students balancing multiple courses, we understood that dedicating

eight hours a day to project development was unfeasible. Consequently, daily stand-up meetings

held each day seemed impractical. To optimize our time and efforts, we opted for a more flexible

approach. We conducted daily stand-ups at the onset of our student and supervisor meetings,

specifically on Mondays and Wednesdays. During these daily scrum sessions, we consistently

addressed the three questions (Kniberg, 2007):

• What progress have you made since the previous meeting?

• What tasks are you currently working on?

• Are there any challenges or obstacles hindering your work?

To overcome the challenge of team members working on Tuesdays, Thursdays, and Fridays, and

wanting to share progress without daily in-person meetings, we implemented a digital scrum solu-

tion. Using a dedicated Slack channel called ”daily scrum” and a Slack bot with a daily reminder

17

message, team members could easily update their progress outside of scheduled meetings. This

streamlined communication, reducing the need for unnecessary in-person meetings, especially on

days with comprehensive updates during scheduled sessions.

4.2.7 Scrum Master

Initially, we considered a rotating Scrum Master role but realized the advantages of consistency.

Maintaining a consistent Scrum Master throughout the project reduced the learning curve and

eliminated the need to track role changes each sprint or week. Consequently, we decided to appoint

a dedicated Scrum Master to ensure stability throughout the project.

The Scrum Master’s role included facilitating and coaching to ensure effective implementation of

the Scrum framework. They organized and led key Scrum events like sprint planning, daily stand-

ups, sprint reviews, and retrospectives. Additionally, the Scrum Master addressed impediments,

fostering a collaborative and productive work environment.

4.2.8 Sprint Review

The Sprint Review is crucial for the scrum team and stakeholders to inspect the product, gather

feedback, and adapt (Kniberg, 2007). After each sprint, we conducted a review with the customer.

We presented completed and incomplete product backlog items, explaining reasons behind incom-

pletions or addressing additional items. Discussions included what went well, challenges faced,

strategies employed, and a live demo of completed work. Customer feedback shaped plans for the

next sprint, and we revisited our project timeline to align with the team’s capacity.

4.2.9 Sprint Retrospective

In our Sprint Retrospectives, we assessed the sprint’s performance in terms of contributions, inter-

actions, processes, tools, and adherence to the definition of done (ScrumAlliance, n.d.), marking

the sprint’s conclusion. We structured our retrospectives for efficiency, preparing an agenda in ad-

vance and using RetroTool for taking notes. Discussions encompassed ’Liked’, ’Learned’, ’Lacked’,

and ’Longed for’ aspects.

We began with individual contributions to the ’Liked’ section, allowing three minutes per person.

This format was repeated for the other sections. Following this, a 20-minute round-robin discussion

allowed team members to elaborate on their points.

We grouped similar issues for clarity and then conducted an anonymous vote, with each member

allocating three votes to prioritize improvements. The top-voted issues were then used to formulate

action points in a 30-minute session. Finally, a 5-minute summary captured key takeaways for the

upcoming sprint.

4.3 Kanban Board

To help visualize our workflow, we utilized Github Projects’ Kanban board. This Kanban board

serves as a visual project management tool, allowing us to track the progress of work items as

they move through different stages in our workflow. It plays a vital role in helping our teams visu-

alize, organize, and efficiently manage tasks, enhancing transparency in our project management

(MiroBlog, 2023).

18

https://retrotool.io/

Within this Kanban board, we have categorized our issues based on their status, with each status

representing a different stage in our workflow. These status categories include:

• Backlog: Holds product backlog items not in the current sprint.

• Blocked: Indicates current sprint issues awaiting completion of others.

• Ready: Issues prepared for work but not yet in progress.

• In Progress: Actively worked on issues.

• In Review: Issues undergoing code review for quality assurance.

• Done: Issues completed and merged into the develop branch.

• Rejected: Issues that cannot or will not be implemented.

4.4 Why Kanban?

Kanban offers valuable visibility into task status, aiding teams in identifying bottlenecks for en-

hanced efficiency (Rehkopf, n.d.). Unlike Scrum, a Kanban board does not reset for every sprint,

providing greater flexibility for reprioritization and updates (Rehkopf, n.d.).

However, this flexibility can pose challenges. Projects with strict deadlines may find Kanban’s

lack of fixed timeframes and sprint commitments challenging. The absence of structured planning

horizons and less emphasis on backlog prioritization might affect task sequencing. Without defined

roles and Work in Progress (WIP) limits, there’s a risk of inefficiency and burnout. The adaptable

nature of Kanban may also dilute team accountability, a concern we address in the Extreme

Programming section (MiroBlog, 2023).

The integration of Scrum with Kanban allowed us to leverage Scrum’s strengths in structured

project management, defined roles, and clear planning horizons. Simultaneously, the Kanban

board’s flexibility accommodated changes seamlessly, enhancing our adaptability and responsive-

ness to evolving project needs. This combined methodology optimized our team’s performance

and project outcomes.

4.5 Extreme Programming

We enhanced the Scrum methodology by incorporating Extreme Programming (XP) practices.

XP is a unique agile software development framework with a dual mission: the creation of higher-

quality software and an elevated quality of life for the development team. XP offers a highly specific

set of guidelines for software development practices, setting it apart from other agile methodologies.

It places a greater emphasis on development practices rather than project management, serving as

a valuable supplement to Scrum (McDonald, 2023).

4.6 Extreme Programming Practices

Sit Together: Given that communication is a core value of XP and that face-to-face conversation

is widely recognized as the most effective form of communication, it is recommended to have your

team work closely together in a shared workspace (McDonald, 2023). To put this into practice, we

opted for a work setup where we sit together and collaborate on Mondays and Fridays, as detailed

in Section 2.1.

19

Pair programming: Pair Programming involves two programmers collaborating at the same

computer to jointly develop software. It leverages the power of two minds and four eyes to facilitate

continuous code review and resolve issues quickly, resulting in higher quality code without doubling

the time spent (McDonald, 2023). Our team tried to embrace the idea of utilizing pair programming

to the fullest extent, implementing it naturally whenever the opportunity arose.

Continuous Integration: Continuous Integration is a software development practice where code

changes are immediately tested as they are added to a larger codebase. This approach helps catch

and resolve integration issues sooner, making the development process more efficient and reducing

the complexity of identifying problems during integration (McDonald, 2023). See section 10.2 for

more information about our unit testing.

Collective Code Ownership: Collective Ownership in software development means that every

team member is authorized and encouraged to make changes to any code file, promoting collabo-

ration and shared responsibility (Agile Alliance, 2023). To put this into practice, we ensured that

every team member had access to all project files, and promoted open communication, allowing

team members to voice their preferences for tasks and change their assignments if needed.

Coding Standards: Coding Standards are a set of shared guidelines ensuring that all code

within a system maintains a consistent and familiar appearance, promoting collective ownership

(Altexsoft, 2021). Recognizing the importance of this, we established a set of coding standards

at an early stage, employing tools like ESLint and prettier to enforce these rules. For a more

comprehensive description of our coding standards, please refer to Section 2.4.

4.6.1 Why Extreme Programming

Integrating Extreme Programming (XP) with Scrum posed challenges. Adapting to XP practices,

like pair programming, within Scrum’s structure demanded extra resources and schedule adjust-

ments. Team members, especially those less familiar with XP, faced a learning curve impacting

productivity. Despite potential risks, we believed embracing XP practices would enhance our

development processes and contribute to project success.

The integration of XP practices into the Scrum framework is motivated by the pursuit of a pow-

erful synergy. XP’s focus on software quality and team well-being complements Scrum’s iterative

progress and customer-centric approach. This integration strengthens team communication and

cohesion through practices like sitting together, enhances issue resolution and code quality via

pair programming, promotes early issue detection with continuous integration, emphasizes shared

responsibility with collective code ownership, and maintains code consistency through coding stan-

dards. The result is higher-quality software delivered efficiently, aligning with the core principles

of both methodologies.

5 Innovation

This section is dedicated to the more current topics in software development; Sustainability, Diver-

sity, and Artificial Intelligence (AI). The team had several dedicated sessions were the sole function

was to identify the related problems to these topics. This was done in consultation with both the

customer and the supervisor. The direct consideration of these topics in a software development

process was somewhat new to both the team and the customer, but very thoughtful and interesting.

20

5.1 Sustainability

Sustainability is defined in (Brundtland, 1987) as the utilization of existing resources without

compromising future generations. Sustainability has gained focus over the past decades. Condori-

Fernandez & Lago (2018) mentions four dimensions within sustainability: social, technical, econom-

ical and environmental. All of these four dimensions contribute in making software development

processes more sustainable. It is important to discover and explore the challenges surrounding the

project’s sustainability early on, and thus make it easier to improve and consider the best solutions

for the project.

5.1.1 Focus within the project

The sustainability aspect of the project was highlighted during the user interview with Kartverket.

Kartverket’s representative presented valid reasons for why sustainability is an important aspect

of the project, and the team discussed further how this focus could be implemented in the best

possible way. For example, it was specifically emphasized that the increased cargo capacity of

a ship, due to more accurate depth data in Norwegian ports can allow ships to take fewer round

trips. Another reason was that the current method to park a ship in the port often revolves around

exchanging hundreds of e-mails between ports and ships. The inclusion of a system that handles

this problem will increase social, environmental and economic sustainability.

Later in the development process the team held a dedicated sustainability meeting, identifying sus-

tainability related aspects. These aspects are categorized into the four dimensions of sustainability.

It was important for the group to address all four dimensions of sustainability, as earlier research

has shown that projects often focus on social and technical sustainability, but lack consideration

about economic and environmental sustainability (Capiluppi & Jaccheri, 2023).

5.1.2 Social sustainability

Social sustainability includes all factors that influence the social and cultural identity of people

(e.g. health and comfort). It also addresses the balance between conflicting interests and how

people assess their environment (Pham et al., 2020). The team emphasized the significance of

security requirements such as confidentiality, authenticity, and accountability, ensuring equal and

equitable data access while preventing unauthorized access. Trust, usability, and user satisfaction

were also considered essential contributors to social sustainability. This relates to the feeling of

comfort, where a safe system prevents any discomfort by being hacked or exposed to a security

threat.

5.1.3 Technical sustainability

The technical dimension refers to maintenance, resilience, evolution and and the ease of transition

of artificial systems (Pham et al., 2020). The team also emphasized the importance of functional

correctness, availability, and interoperability, with the latter being crucial for software reuse and

interaction with other systems. Maintaining code standards, using version control systems like

Git, and emphasizing modularity and testability were identified as key practices for technical

sustainability. The team also pointed out that in hindsight, the project would have been more

technical sustainable with a frontend framework like React. The complexity of the project is not

very high at the moment, but for further implementation a framework would streamline some of

21

https://react.dev/

the low level implementation details, such as imperatively manipulating HTML DOM-elements

that is currently necessary.

5.1.4 Economical sustainability

The economical sustainability is reflected by the degree to which life cycle costs are minimized,

economic efficiency is improved and capital and product value is maintained (Pham et al., 2020).

The team recognized effectiveness, reusability, and resource utilization as vital contributing factors.

By optimizing operations based on data depth, the user of the system can load cargo ships more

efficiently, prevent accidents, and enhance planning, thereby maximizing resources and reducing

waste.

5.1.5 Environmental sustainability

The environmental sustainability covers the protection of the global and local ecosystems, and

saving natural resources. This includes issues ranging from immediate waste production to energy

consumption (Pham et al., 2020). The team acknowledged resource utilization, maintainability,

environmental risk mitigation, and time behavior as critical factors.

The aforementioned improvement to cargo loading will also reduce the amount of round trips

needed, thereby reducing emissions and improving time efficiency. In addition, our solution will

remove the need for using emails with PDF as the method for sharing port information. According

to our customer, these email threads can be extensive and reach up to 300 emails. Replacing this

with an up to date map client will reduce the amount of data transferred and save a lot of time.

5.2 Diversity

Diversity in the field of computing is crucial for fostering inclusion and representation across

various dimensions, such as race, gender, beliefs, geographical origin, age, abilities, and more.

This inclusive approach has gained traction in software development, as evidenced by the positive

impact diversity can have on teams and the software development process (Google, 2022).

5.2.1 Diversity in the process: Team dynamics

In our group, we recognized the significance of diversity and strove to incorporate it into our team

dynamics. The balanced representation of men and women in our team was predetermined to

ensure gender diversity. This intentional composition aligns with industry trends, where companies

actively seek diversity for its numerous advantages (Microsoft, 2023).

Software engineering is a male-dominated industry, which makes it important to not overshadow

the female minority. Even in gender-balanced groups like ours there is a trend for women to

be assigned more traditional, non technical work, such as project manager, secretary, or writer

(Hirshfield & Koretsky, 2017). Therefore, we payed extra attention to diversifying the project

roles (see Table 1) such that both male and female opinions would be heard equally in all aspects

of the project. Notably, we assigned the role of software architect and UX manager to women,

which have been significantly male-dominated roles for TDT4290 in previous years (Nguyen-Duc

et al., 2019).

During Sprint 4, the team experienced major absences from two team members, one due to planned

22

surgery and the other due to unexpected health issues. Despite a temporarily reduced workforce,

the team adapted by facilitating for digital participation and remote work, ensuring continued

productivity.

The decision-making process for both the role assignments and adapting to health challenges was

characterized by open discussions and mutual agreement. Our commitment to diversity extended

beyond gender, encompassing a supportive work environment that valued individual contributions,

regardless of background or perspective. Overall, we felt like our explicit focus on diversity con-

tributed to an inclusive work environment, which promoted a wider range of perspectives, stronger

innovation, and faster problem solving.

5.2.2 Diversity in the Product: Usability

It is important to consider the inclusiveness of software that aims to support diverse people in

problem-solving situations. The users who tend to be best supported by problem-solving software

are those who are best represented in software development teams, e.g. relatively young, able-

bodied, males (Burnett et al., 2016). Since the potential users of our product is mostly the older

generation, it was incredibly valuable to perform usability tests as described in Sections 3.7 and

10.4 on this demographic. We realized that diversifying the usability test subjects further, such

as including women, different nationalities and diverse age groups, could have given us even more

nuanced views of the product’s usability. However, given the limited time and resources of the

project, it was not prioritized to find more a more diverse group of usability test subjects.

5.3 Artificial Intelligence

AI has evolved from something people hardly know, to a tool used for various tasks in a normal

working day. The recent introduction of ChatGPT and other large-language models (LLM) have

changed the way people solve problems. The inclusion of these tools in software development have

also expanded widely, since research has shown that productivity can increase when using these

tools (Kalla & Smith, 2023).

5.3.1 Customer demands

The customer had a proposal regarding AI in our project, specifically machine learning, to help

the user extract relevant data and make smart suggestions in the software system. This part

of the project was not initiated, as it was clear that the customer wished us to prioritize other

requirements first.

5.3.2 Usage of AI tools

On the other hand, the team has used AI in the development process, by using ChatGPT to

troubleshoot problems and generating code snippets. The use of ChatGPT in the project was

encouraged by the customer, to experience how useful this tool really is. The team has experienced

that ChatGPT can increase productivity by providing solutions to problems related to coding.

Making use of this approach enabled us to develop new skills and concentrate on tasks of higher

relevance, moving away from more mundane, low-level activities. This is documented as one of the

main beneficial aspects of integrating AI into software development (Satell, 2019).

23

However, some drawbacks were found as the application grew in size, since ChatGPT required

more knowledge about the remaining code and dependencies in order to be effective. This led to

long and complicated prompts, which created errors. The team resorted to mainly using ChatGPT

as a debugging tool and search engine to maximize efficiency.

The team did not use Github Co-pilot, due to the fact that team members did not want to have

code written for them. The team made a decision early on to try to do all the coding by themselves,

and not utilize AI tools directly in an IDE for the production of code, only for troubleshooting and

coming up with general ideas. This was done to increase the learning aspect from the project. In

hindsight this could have boosted the teams productivity, but it was considered more valuable to

learn the programming language and acquiring new knowledge than maximizing the productivity.

6 Requirements Specification

6.1 Functional Requirements

The functional requirements for the project are presented in Table 5. These were derived from the

business goals presented in Section 3.1, as well as the user interviews described in Section 3.7.

Table 5: Functional requirements for the project

ID Related BGs (4) Requirement Priority

FR1 BG2, BG3 NGIS-OpenAPI credentials must be hidden through

a proxy

High

FR2 BG2 Collected geographical data must be visualized on a

web based interactive map

High

FR3 BG2 Users should be able to view details about the data

by clicking on their locations on the map

High

FR4 BG3, BG4 Users should be able to edit details of the data, such

as their status

High

FR5 BG3, BG4 Users should be able to edit geometry (location) of

points and lines on the map by dragging them inter-

actively

Medium

FR6 BG1, BG2 Objects on the map should be displayed with official

symbols based on the object type

Medium

FR7 BG2 Use the Havnedata WMS and depth WMS to display

read only data without need for credentials

Medium

FR8 BG2, BG3, BG4 Users should be able to create new objects and store

them in NGIS through a easy-to-use form

Medium

FR9 BG1, BG4 The application should give detailed feedback to the

user in case something goes wrong

Medium

FR10 BG1, BG3 Users should be able to enable an aerial photo layer

on the map to more accurately place objects

Low

FR11 BG1, BG4 The map should clearly mark objects that are not in

use or operational

Low

FR12 BG2 Data displayed on the client should be portioned to

enhance performance

Low

24

6.2 Non-functional requirements

Non-functional requirements, also known as quality attributes, are used to indicate how well the

system satisfies the stakeholders needs beyond the basic function of the system (Bass et al., 2021,

39). Quality attributes often specify some measurable or testable property of a system, often

concerning properties like availability and performance. The important quality attributes for this

project are described below.

6.2.1 Usability

Usability is a quality attribute concerning how easy it is for users to accomplish desired tasks,

and how the system supports the user in doing the task (Bass et al., 2021, 197). Early on in the

project, the group had a meeting with Kartverket (described in Section 3.7.1). During this meeting

it became clear that usability had to be considered one of the most important quality attributes

for the project. One of the main requirements for this system is to be designed with the end user

in mind. The system is supposed to make the process of updating geographical port data easier

and more accessible, also to those who are not that familiar with technology. A lot of the end

users are older people who are not that familiar with new technology, and may be opposed to start

using new and modern solutions. It is therefore critical that the system is developed and designed

with usability in mind.

Related business goals: BG1, BG3, BG4

6.2.2 Modifiability

Modifiability is a quality attribute that is all about how easy it is to make changes to a system

(Bass et al., 2021, Chap. 8). Our product is a part of a bigger project, and will be further expanded

in the future. It is therefore important that the system is built with modifiability in mind to ease

the costs of change, and to make it easier for different development teams to understand and work

on the project.

With this in mind, it is important to make the code modular to isolate potential bugs. Using

third-party libraries can also make the software more modifiable, since there is less cost in adapting

existing solutions than writing everything from scratch. In our case it would be totally infeasible

to fulfill the business requirements of the project without using Leaflet as a third-party library for

implementing the interactive 2D map. Finally, it is important that the code follows clear standards

and has consistent formatting.

Related business goals: BG6

6.2.3 Security

The security quality attribute tackles the system’s ability to protect data and information from

unauthorized access while still serving this data to the authorized users (Bass et al., 2021, 169).

During meetings with the customer, it became clear that input validation is an important require-

ment for the system. Input validation is also an important measure to ensure the availability

and usability of a system, but in the context of the customers requirements, this is a security

requirement. The security of the system will be further discussed in 9.

Related business goals: BG7, BG8, BG9

25

7 Architecture

This section presents the software architecture of the system. The architecture helps describe the

different components of the system, their relations and communication between them. Creating

an architecture for a system is intended to help plan and develop the system. In the section below,

the implemented architectural tactics and patterns are presented, as well as different architectural

views describing the architecture of the system.

7.1 Architectural Tactics and Patterns

Architectural tactics and patterns are techniques used in software architecture to achieve required

quality attributes and to solve common problems often encountered in software development. All

tactics and patterns mentioned in this section are taken from Software Architecture in Practice by

Bass et al. (2021).

7.1.1 Tactics

Split module tactic

A module should only handle responsibilities that are cohesive. If the module handles multiple

non-cohesive responsibilities, the cost of modification will be higher. To increase cohesion and

reduce costs, modules handling multiple non-similar responsibilities should be split. This increases

the modifiability of the system.

Restrict dependencies

Restrict which dependencies a module can have. This is to reduce the cost of change, as the

probability of a change influencing multiple modules is reduced.

Use an intermediary

By inserting an intermediary between two modules, the coupling and dependencies between them

are reduced and modifiabilty is improved.

Validate input tactic

This tactic tackles the validation of input data. The customer has made it clear that input

validation and sanitation of data is an important feature of the system. By validating input, the

possibility of system failures are reduced and increases the systems uptime. Input validation is

also an important security feature, and acts as a basic defense against attacks. Thus, this tactic

improves both the availability and security of the system.

Exception handling

Detected exceptions should be handled in some way to prevent the program from crashing. Han-

dling exceptions improves the availability of the system, but also improves the usability of the

system by providing feedback to the user about the system’s state.

7.1.2 Patterns

Client-Server Pattern

A common pattern where there is a server which serves request for multiple clients simultaneously.

This pattern removes the coupling between different clients, such that clients are not aware of

other clients being served at the same time. Furthermore it is possible to develop and evolve

the client-side and server-side of the product independently of each other as long as the interface

26

between them stays the same. This partitioning of the system prevents changes from propagating

through the whole system, which greatly improves the modifiability.

7.2 Architectural Views

Architectural views are used to describe the software architecture of a system in smaller chunks,

and to expose how the architecture handles the different quality attribute requirements. For this

architecture, the 4+1 View Model as described in Kruchten (1995) is used for documentation. This

view model consists of four main views, the logic, process, development, and physical view, as well

as an extra scenario based view. In the following section, the scenario view has been omitted.

7.2.1 Logical View

The aim of the logical view is to model how the system answers to the functional requirements

of the system by modelling how different functionality and responsibilities are assigned to various

modules. Figure 5 shows the overall structure of the system. Data is retrieved from NGIS-OpenAPI

which is an already established API for geological data in Norway. Instead of having each client

connect directly to the NGIS-OpenAPI, client requests are directed through a proxy. The proxy

works as an intermediary between the clients and the API, reducing coupling and dependencies

between them, as well as hiding API-access credentials.

Figure 5: Simple overview of the system

The diagram in figure 6 outlines a simplified overview of the client part of the system. There are

two kinds of modules here, components and util/helping-modules. As can be seen in the diagram,

the components are not dependent on each other with the exception of the createFeature- and

featureDetails-components which makes use of the multiselect-component. Not all of the compo-

nents have dependencies with all of the util-modules. The dependencies between the components

and util-modules have been simplified to make the diagram more readable.

27

Figure 6: Logic view: diagram for the client-side of the system

The arrows indicate method calls from the originating module to the target module, while the

lines show mutual calls between connected modules.

7.2.2 Process View

The process view aims to capture the run-time aspects of the system, and handles non-functional

requirements like performance, availability and concurrency. The sequence diagram in figure 7

shows how the system communicates with NGIS-OpenAPI. The diagram models a scenario where

the user adds a new feature (map object) to the map, and how the system handles this request.

When the user creates a new feature, the createFeature-module calls the putFeature()-method from

the ngisClient-module. This method sends a request over HTTP to the proxy, which relays this

request to NGIS-OpenAPI. When the proxy receives a response from the API, it sends this to the

ngisClient-module which can send the response to the createFeature-module. Once createFeature

has confirmed that a response has been received, an update message is shown to the user. All

communication with NGIS-OpenAPI happens in this manner: A module that wants to interact

with the API calls a method in the ngisClient-module, which then sends a HTTPS request to

the proxy, and so on. Having one module handle all of the external communication improves the

system’s modifiability as it reduces the number of dependencies in the system, instead of having

multiple external dependencies to an external element.

28

Figure 7: Process view: sequence diagram for creating a new feature

7.2.3 Development View

The development view, depicted in Figure 8, organizes software modules for the development

environment, aiming to streamline system development and task allocation among developers.

This view presents a layered module structure, clarifying dependencies: modules in upper layers

rely on those in lower layers and cannot be fully developed until their dependencies are completed.

Modules on the same layer, however, can be developed at the same time. For example, the

util and config modules will evolve throughout the project, with functionality added as needed.

Dependencies within the same layer are also indicated by lines between modules.

Figure 8: Development view of the system

7.2.4 Physical View

A software system executes on a number of different processing nodes. The physical view aims to

allocate the different parts of the software onto these nodes. The physical view in Figure 9 outlines

the physical aspect of the system. The system can be divided into two parts: The client part runs

29

on the users’ own devices in a web browser, while the proxy runs on a server. The last node of the

system is the NGIS-OpenAPI, with which the proxy communicates. The NGIS-OpenAPI retrieves

data from a central database for Norwegian port data, but this is not modelled in the diagram as

the details of this process is not relevant to this project. All communication between the nodes

happens over the internet using the HTTP protocol.

Figure 9: Physical view of the system

7.3 Issues

The application makes use of CSS to style the user interface and to create custom HTML com-

ponents. The different CSS stylesheets are not represented in any of the architectural views. The

use of CSS in the application has an important impact on the modifiability and sustainability of

the code. The CSS often creates unintended coupling between components as styles are applied

in a global scope. This means that changes in the styling of one component may have unintended

consequences for another component in another part of the system. Especially as the application

grew and more components were created and integrated with each other this became more chal-

lenging. This issue greatly decreases the modifiability and sustainability of the system as making

changes to the system becomes more costly. In the design phase of the project, the group should

have created a CSS architecture and agreed upon conventions for how CSS could be utilized in a

good manner. For instance agreeing on a naming convention for class names and being more aware

of how CSS specificity works would have mitigated some of the problems the group faced during

development.

8 Sprints

The following sections will go through the planning, implementation, and review of all five sprints

we held according to the project schedule (see Figure 1). All backlog issues completed for each

sprint can found in the project’s Milestones on Github. Throughout the project we also recorded

all important decisions (mainly technical) we had to make during the sprints in a decision log,

which is shown in Appendix D.

30

https://developer.mozilla.org/en-US/docs/Web/CSS/Specificity
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/milestones?state=closed

8.1 Sprint 1 - Design

Sprint Goal: Mapping user needs, create mockups, and design the architecture

Duration: 4. September - 18. September

8.1.1 Sprint 1 Planning

During the sprint planning meeting, we created the backlog for the sprint. This can be viewed

in Figure 6. Recognizing the importance of having a clear early-stage design representation, we

decided to create a Figma mockup. This mockup would not only help the development process,

but also allow for usability testing to better understand and map user needs. Additionally, we

collectively agreed that if there was enough time we would initiate the setup of the map client,

even though this formally belonged to the next sprint. This decision was made to ensure that

every team member had meaningful work to engage with, but it was contingent on the successful

completion of issue 2 within the sprint timeframe.

Table 6: Sprint 1 Backlog

ID Issue Estimate Related FR/BG Completed?

#1 Create a sketch of the architec-

ture

M No

#2 Setup proxy component M FR1 Yes

#4 Communicate with NIGS Open

API

XL FR1, FR2, FR3,

FR4, FR5, FR7,

FR8

Yes

#5 Create a simple Figma mockup M BG1 Yes

#9 Create a CONTRIBUTING.md M BG6 Yes

8.1.2 Sprint 1 Implementation

As this sprint was a part of the design phase of the project, most tasks were administrative or a

form of research. The team experimented a bit with the NGIS-OpenAPI to learn its workings,

and gain better understanding of the data it provides. This is reflected in issue #4. During

initial conversations with the customer, it was suggested that the group could utilize a proxy

component between the frontend, and NGIS-OpenAPI to mainly hide API credential details that

were provided for a test server hosted by Kartverket. This proxy would also double as the backend

for the project, and the setup of this proxy was prioritized for this sprint. Once the team understood

how to communicate with NGIS-OpenAPI, setup for the proxy started and communication with

the API through the proxy was established.

A Figma mockup was created. This was both to create an initial design for the user interface for

the project, but also to map the team’s understanding of the project. These Figma sketches can be

found using this link. For the administrative part, the group defined coding conventions for the

projects. These were outlined in a CONTRIBUTING.md file to make it easily accessible. Other

administrative work that is not reflected in the sprint backlog was also completed. For instance,

templates for meetings (see Appendix E) and an outline for the report were created.

31

https://github.com/digitalhavn/prototype-redigeringsklient-ngis/issues/1
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/issues/2
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/issues/4
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/issues/5
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/issues/9
https://www.figma.com/file/XcQRHuxuL4SIzqSrpYczYU/Utkast-kartklient?type=design&node-id=0%3A1&mode=design&t=l5oWxy8TRdpae45B-1
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/blob/develop/CONTRIBUTING.md

8.1.3 Sprint 1 Review

While we made good progress towards the sprint goal, it was not fully completed. One primary

reason for this was that the team realized that the design phase needed more time and attention.

This insight was prompted by our scheduling of a user interview in week 38, the week after the

conclusion of the sprint. It also became clear that the team’s limited understanding of the project

restricted the team’s work in this area, and that the design phase needed to be more fluid to

align with the team’s evolving understanding of the project’s requirements. Issue #1 for instance,

was not completed during this sprint because the team felt they did not have a good enough

understanding of the project requirements to design a proper architecture. This issue was therefore

moved to a later sprint. Despite this, the customer confirmed that our understanding of the project

aligned with their requirements during the sprint demo meeting. In this meeting, the Figma

mockup was presented to the costumer, as this represented our work this far.

Action points

A retrospective was held to conclude this sprint as described in Section 4.2.9. The action points

extracted from this meeting are listed below:

• Start each meeting with a 1-minute check-in with team members to foster a better under-

standing of how everyone is feeling and if they’ve had any enjoyable experiences since our

last meeting. Additionally, consider scheduling a social dinner or lunch to strengthen team

bonds.

• Encourage everyone to summarize their daily standup updates in Slack either before or after

each meeting. This helps keep everyone informed and aligned.

• Reserve Fridays for technical demos showcasing significant changes. Keep these sessions

informal and interactive, and having a screen available would enhance the experience.

• Following the daily scrum, inquire if anyone is interested in pair programming to promote

knowledge sharing and collaboration within the team.

8.2 Sprint 2 - Create Map Client

Sprint Goal: Create a map client that displays data from NGIS-OpenAPI

Duration: 18. September - 2. October

8.2.1 Sprint 2 Planning

Before the sprint planning started, the team conducted a user interview with Kartverket. This

is described in more detail in Section 3.7.1. After this interview, the team gained a better un-

derstanding of the requirements for the project, especially what kind of functionality the project

should provide. During the sprint planning meeting, the team’s improved understanding made it

easier to create relevant tasks. The sprint backlog is presented in Table 7.

Sprint 2 Backlog:

32

Table 7: Sprint 2 Backlog

ID Issue Estimate Related FR/BG Completed?

#1 Create Architecture sketch M BG6 Yes

#6 Setup frontend map component L FR2 Yes

#7 Create a CI pipeline with Github ac-

tions

M BG6 Yes

#10 Setup Lerna monorepo M Yes

#11 Set up husky precommits M BG6 Yes

#13 Set up testing environment M Yes

#27 Display details about features XL FR3 Yes

8.2.2 Sprint 2 Implementation

Our primary focus for this sprint was to set up the frontend map client (issue #5). This required

us to do some research regarding Leaflet and GIS in general, as it was mostly new for all of us.

Luckily, Leaflet turned out to be quite easy to use. The only slight bump in the road was figuring

out the right map projection to use with NGIS-OpenAPI, and differing conventions regarding the

order of latitude and longitude in different standards, to make the data display correctly with

Leaflet. Additionally, we also focused on setting up all infrastructure surrounding our code. This

included a CI pipeline with Github actions, a testing environment with Vitest, husky precommits,

and a monorepo using Lerna.

8.2.3 Sprint 2 Review

The team managed to complete the goal for sprint 2. The developed map client shows data from

the NGIS-OpenAPI, and it is possible for a user to click on a map point to access more information

about that point. During the sprint demo, the customer again confirmed that our understanding

of the project requirements aligned with theirs. The team also discussed user interview with the

customer, and how the team was very pleased with its results. To take this process a step further,

the customer suggested that we could meet with representatives from Port of Arendal and Port of

Kristiansand as well. These user interviews were then scheduled for sprint 3.

Action points

The action points created during the sprint retrospective are presented below:

• Create agenda for Monday meetings on Fridays and Friday meetings and Wednesday meetings

on Mondays

• React to slack message if you will be present at tomorrow’s meeting. Create a slack reminder.

• Have at least one hour of time dedicated to sprint planning

8.3 Sprint 3 - Edit functionality on properties

Sprint Goal: Create simple editing functionality on properties via NGIS-OpenAPI

Duration: 2. October - 16. October

33

https://github.com/digitalhavn/prototype-redigeringsklient-ngis/issues/1
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/issues/6
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/issues/7
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/issues/10
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/issues/11
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/issues/13
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/issues/27
https://vitest.dev/
https://typicode.github.io/husky/
https://lerna.js.org/

8.3.1 Sprint 3 Planning

According to the action point created in the sprint 2 retrospective, the group dedicated some extra

time for the sprint planning. This was because the team desired to created more detailed tasks

than what had been done in sprint 1 and 2, to make it easier to understand and get started on a

task. The sprint 3 backlog is presented in Table 8.

Sprint 3 Backlog:

Table 8: Sprint 3 Backlog

ID Issue Estimate Related FR/BG Completed?

#28 Edit attributes L FR4 Yes

#33 Create loading indicator S BG1 Yes

#34 Set up WMS M FR7 Yes

#37 Edit geometries L FR5 Yes

#39 Set max zoom of leaflet map XS BG1 Yes

#51 Use official symbols on objects M FR6 Yes

8.3.2 Sprint 3 Implementation

The interviews with Kristiansand port and Arendal port were conducted during the first week of

the sprint. These are described in more detail in Section 3.7.

The backlog items for this sprint required further research of NGIS-OpenAPI and Leaflet. In order

to implement issue #37, we went for a simplified solution where latlng coordinates would have to

be manually entered to change the position of objects, instead of being able to edit positions on

the map in an interactive way. This was mainly to avoid the issue becoming too large, but would

definitely have to be changed in a later sprint.

Some features for usability were also implemented during this sprint. Previously all map points

were denoted using the same standard Leaflet symbol. To make a distinction between the different

types of map objects, the Kartverket’s official map symbols where implemented to denote the

different object types. Furthermore a loading indicator was implemented, as well as a restriction

on how far the user is able to zoom out on the map. Both of these features improved the usability

of the system, as they make it easier for the user to navigate and use the application.

8.3.3 Sprint 3 Review

Due to the customer’s participation in both of the conducted usability tests during the sprint,

there was no need for a designated customer meeting after this sprint. However, we got plenty

of inputs from the usability tests and interviews that we were able to discuss in detail with the

customer. This helped the team identify the key takeaways from the tests. The team was also able

to perform a status check-in with the customer during these sessions. The general feedback was

that the customer was pleased with the team’s progress. However they did also point out that the

current solution for editing geometries was too inconvenient, and suggested using the Leaflet.draw

plugin to implement interactive geometry editing.

During the sprint, the team really experienced the significance of consistent progress updates

through daily scrums and the collaborative approach in development work. A lack of cooperation

34

https://github.com/digitalhavn/prototype-redigeringsklient-ngis/issues/28
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/issues/33
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/issues/34
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/issues/37
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/issues/39
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/issues/51
https://leaflet.github.io/Leaflet.draw/docs/leaflet-draw-latest.html

in the technical sphere led to a few merge conflicts in the code, which could have been mitigated

with improved communication and teamwork in coding and reporting.

It should also be noted that the team was invited by the customer to participate in the yearly

geomatics conference FOSS4G (https://foss4g.no/) in Trondheim on the 25th of October. The

conference aims to create a meeting place for discussing open-source software in the geomatics

industry. The team was asked to provide a 20 minute presentation about the project, which we

were happy to do.

Action Points:

The action points created during the retrospective are presented below:

• Schedule a sustainability meeting for next week.

• Assign tasks and promote pair programming during sprint planning while monitoring status

during daily stand-ups.

• Draft content about AI, diversity, and sustainability in the report during Sprint 4.

• Document insights from usability testing

• Plan for FOSS4G.

8.4 Sprint 4 - Edit functionality on geometries

Sprint Goal: Create editing functionality on point and line geometries.

Duration: 16. October - 30. October

8.4.1 Sprint 4 Planning

After Sprint 3 we had completed the three main sub goals of creating a map client that could display

and edit attributes of objects with NGIS-OpenAPI. The team was free to choose which remaining

sub goals to focus on going forward. During the planning of Sprint 4, we decided to mainly focus

on the fourth sub goal of implementing geometry editing, which was partially completed in Sprint

3 already. The backlog for this sprint, presented in Table 9, also included a feature for creating new

objects, and a custom layer control for the map as we were not satisfied with the user experience

of the default Leaflet layer control.

We agreed with the customer in a later meeting to formally drop the 3D map client from the

project scope as it would be difficult to learn something completely new this late in the development

process. Instead we decided to potentially do a security analysis of NGIS-OpenAPI if time would

allow it. Furthermore, a sustainability focused discussion with the team’s supervisor was scheduled,

and the team started preparations for the FOSS4G event.

Sprint 4 Backlog:

8.4.2 Sprint 4 Implementation

During this sprint, a lot of functionality was added to the map client. The user can now choose

which dataset, or port, they are intrested in, and the map will only display this dataset. Other

35

https://foss4g.no/

Table 9: Sprint 4 Backlog

ID Issue Estimate Related FR/BG Completed?

#38 Create custom layer control L BG1 Yes

#49 Set active dataset S BG1 Yes

#52 Interactive geometry editing L FR5 Yes

#53 Create new features L FR8 Yes

#57 Change map that is displayed

based on zoom

M BG1 Yes

#58 Add satellite and sea map layers XS FR7, FR10 Yes

#59 Display ”description” property

from JSON schema

M FR3 Yes

custom map controls, like the layer control, were also implemented. While Leaflet already have a

lot of default map controls, creating custom controls made it easier for the team to create an UI

that aligned with the requirements for the project.

For implementing interactive geometry editing, we ended up not using Leaflet.draw like we orig-

inally planned, since we had some problems getting it to work properly. However, later on when

implementing creation of new objects, we managed to make Leaflet.draw work for placing new

points and lines on the map. This is not a major issue, but we only managed to make editing

points possible without Leaflet.draw, so migrating everything over to Leaflet.draw should definitely

be done in the future.

8.4.3 Sprint 4 Review

When planning for this sprint, the team did not consider the extra workload the FOSS4G event

would impose on the team. The led to some issues originally planned for this sprint to be moved to

sprint 5 in order to ensure a balanced workload. FOSS4G also doubled as the sprint review meeting

with the customer, as a demo of the project were presented at the event. During this meeting the

customer also asked if the team could present the project at a pivotal meeting regarding the

continuation and funding of the project. This meeting will take place near the end of the project.

At this this point in the process, the project was becoming of considerable size, and problems

concerning the choice of – or rather the lack of – JavaScript frameworks and UI libraries became

more apparent. Due to time constraints, the team did not think that the value of incorporating

such libraries and frameworks would outweigh the perceived costs of integrating these technologies

into the project.

Action Points:

The action points derived from the retrospective meeting is presented below:

• Enhance the granularity of task status reporting during the daily scrum, covering completed

tasks and pending work.

• Prioritize pair programming for resolving minor issues.

• Introduce deadlines for pending tasks (report and coding) within the final sprint.

• Provide commentary on UI libraries and frameworks within the project report.

36

https://github.com/digitalhavn/prototype-redigeringsklient-ngis/issues/38
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/issues/49
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/issues/52
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/issues/53
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/issues/57
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/issues/58
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/issues/59

8.5 Sprint 5 - Finalize the project

Sprint Goal: Finalize the product

Duration: 30. October - 13. November (extended to 20. November)

8.5.1 Sprint 5 Planning

During the sprint planning meeting, the team prioritized tasks that would enhance existing func-

tionality rather than implementing completely new features. This was done to ensure that the

product would be finished on time, and to ensure the quality of the end product.

Sprint 5 Backlog:

Table 10: Sprint 5 Backlog

ID Issue Estimate Related FR/BG Completed?

#35 Implement error handling and

notifications

M FR9 Yes

#40 Create search for locations M BG1 Yes

#45 Request data based on visible

area

L FR12 Yes

#60 Handle property ”array” types M BG1 Yes

#65 Display ”ikke i bruk” symbol S FR11 Yes

#69 Confirm deletion S FR4 Yes

#71 Create a logo S BG1 Yes

#75 Test security XL BG9 No

8.5.2 Sprint 5 Implementation

As this was the last planned sprint for the project, more of the team’s focus was directed towards

the writing of the report, but there was still technical work to be done in order to complete the

sprint goal and conclude the technical aspects of the project. As previously mentioned, the focus

of this sprint was to enhance existing functionality. All issues except #71 and #75 in Table 10,

are such enhancement issues. At this point, the system was not providing much feedback to the

user concerning the state of the system. To improve this, proper error handling was implemented.

Error handling does not only prevent the application from crashing, it also helps provide feedback

to the user about what has gone wrong.

Furthermore, the application was also quite slow because of the high number of data points being

fetched from NGIS-OpenAPI. To reduce load times as well as lag in the application, the application

was changed to only request data from the area that is currently visible on the map. This issue

(#45) was not completed within the initial time frame of the sprint, but we decided to extend

the sprint one week to finish this issue, and a few other minor issues like deployment and adding

extra map tiles which Norkart suggested towards the end of the sprint. For issue #75, the cus-

tomer requested that the team would do a security analysis of NGIS-OpenAPI, but due to slow

communication with our contact person and other priorities, this was not achieved in time.

37

https://github.com/digitalhavn/prototype-redigeringsklient-ngis/issues/35
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/issues/40
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/issues/45
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/issues/60
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/issues/65
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/issues/69
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/issues/71
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/issues/75

8.5.3 Sprint 5 Review

The team had a meeting with the customer to demonstrate the last features that had been im-

plemented. During this meeting the customer requested some additional work. This was mostly

adding more WMS map layers and map tiles, but also finding somewhere to temporarily deploy

the application. The customer was happy with the implemented functionality, and even expressed

that we probably implemented more than what was needed for a prototype. There have also been

several meetings with the customer afterwards to discuss the presentation and demo the team is

having in the pivotal meeting.

Since this was the last sprint of the project, its duration should have been longer from the start

than previous sprints. During the spring planning, the group should have taken unforeseen work

into consideration. When reflecting about this during the sprint retrospective, the group agreed

to extend the sprint.

Regarding the report, the team lacked a good system for ensuring that parts of the report that

were already written were thoroughly reviewed by multiple team members. Additionally, the team

should have utilized our supervisor and customer earlier in the report process to ensure that the

entire document is reviewed by both parties. To improve this, the team expanded our worksheet

for the report to include a column where team members can write their names when they have

reviewed a section. By doing this, the team gains an overview over what have been reviewed, and

which parts need more attention.

Action Points:

The action points created for the conclusion of the project during the retrospective meeting are

listed below:

• Review parts of the report internally as they are finished and then send to the supervisor

• Produce all report text Friday 17.11 (preferably before Friday)

• Go through the whole report and finalize it on Monday 20.11

9 Security

Software systems are critical to modern business operations, making their security and reliability a

top priority, particularly for those exposed to external risks via internet connectivity. Our internet-

connected software as a result, necessitates a thorough security assessment to identify, understand,

and mitigate potential threats. This process, known as threat modeling, is crucial for safeguarding

valuable assets against security vulnerabilities (OWASP, 2023).

Threat modeling is an extensive, continuous endeavor that is never truly complete. However, due

to the limitations in the project’s scope and time, we have opted for a more focused security

evaluation. This evaluation follows the principles of the Risk Assessment Framework by McGraw

(McGraw, 2022), a framework established by the American Cybersecurity & Infrastructure Security

Agency. It outlines five essential steps for conducting security assessments.

1. Understand the business context

2. Identify and link the business risks and technical risks

38

3. Synthesise and rank the risks

4. Define a risk mitigation strategy

5. Carry out fixes and validate

To enhance the robustness of our security assessment, we integrated key practices from ”The

Seven Touch Points of Secure Software” (McGraw, 2005), which are highlighted as important in

our course compendium (Jaccheri, 2023). This approach involved the development of abuse cases to

pinpoint risks (Table 12), the establishment of explicit security requirements, and the execution of

risk analysis at the design and architectural stages. Additionally, we leveraged recognized security

frameworks such as the STRIDE Threat Model (Microsoft, 2009) to identify potential threats and

the OWASP Cheat Sheet (Microsoft, 2009) to inform our risk mitigation strategies.

The following subsections provide an in-depth look at the outcomes of our risk assessment. These

findings were instrumental in developing a comprehensive test plan, which is outlined in Section 10

Testing. It’s important to mention that our security assessment was somewhat limited in scope,

as E.g. managing access control was not part of the project requirements.

9.1 Understanding the Business Context

In the document, the business context is established by examining the organization’s objectives

and valuable assets. This context, as outlined by McGraw (2022), is pivotal for understanding the

impact of various risks. An initial exploration of this context is presented in Section 1.1, titled

’Overall Context.’ This section sets the stage for a more detailed discussion found in Section 3,

which delves into the ’Problem Space and Solution Space.’

Further, an overview of the business goals is systematically laid out in Table 4. This table provides

a clear and concise reference for understanding the organization’s objectives. Building upon this

foundation, we have addressed the business assets, which are shown in Table 11.

Table 11: Business Assets

Business Assets

ID Description

BA1 Port and location data

BA2 Source code maintainer rights

BA3 Servers and databases

BA4 Brand reputation

9.2 Risk identification, evaluation and mitigation strategy

This section addresses step 2, 3 and 4 of the Risk Assessment Framework, focusing on the identi-

fication, evaluation and mitigation of risks.

Risks are categorized into two main types: business risks and technical risks. Business risks are

those that have a direct effect on the achievement of business objectives. Technical risks, on the

other hand, concern the practical aspects of how the system might be compromised by potential

attacks (McGraw, 2022).

39

To effectively identify and prioritize these risks, it is essential to possess a comprehensive under-

standing of the application’s design as well as insights into the profiles and capabilities of potential

attackers.

9.2.1 Application design

Following the guidelines on threat modeling from the OWASP, 2021 Cheat Sheet, understanding

the application’s design is essential to identify potential risks effectively. A crucial aspect is knowing

how data circulates within the system and identifying trust boundaries, as detailed in Section 7

Architecture.

In the back end’s data layer, transactions are confined to a physical server, making unauthorized

access to this server or the client’s machine highly challenging. As such, internal interactions within

each layer are considered secure. The primary trust boundaries, therefore, are where data transfers

over the public Internet.

The back end is designed not to store user data persistently or modify data through endpoints,

indicating that the likeliest attack vector is the data flow via internet communications. Accordingly,

our threat modeling focuses on safeguarding data transmitted over the Internet.

9.2.2 Potential attackers

By evaluating potential attackers’ motivations, skills, and resources, we can assess the likelihood

of threats to our system. Given that this project focuses on developing a prototype with a very

limited user base and doesn’t involve personal or sensitive data like user credentials or credit card

details, the chance of sophisticated, organized cyber attacks is low. The likely attackers might

be driven by the intent to disrupt the application’s operations, get access to geological data or to

spread miss information about port data.

However, the risks of legal issues and reputation damage from such attacks act as deterrents, making

us think potential attackers are only moderately motivated. In terms of skills and resources, these

attackers are also considered to have a moderate level. They are likely to have a basic knowledge

of internet protocols and programming, along with access to standard hacking tools. Advanced,

technical attacks like buffer overflows, requiring more sophisticated expertise and resources, are

considered unlikely from such attackers.

9.2.3 Abuse cases

Beginning the process of risk identification, a strategic approach is to construct abuse cases, which

effectively channel the mindset of a potential attacker. Abuse cases, akin to use cases, articulate

how the system might react when compromised. The development of abuse cases necessitates a

clear outline of the assets requiring explicit coverage of what should be protected, from whom, and

for how long (McGraw, 2005). Given that this outline is given in preceding sections we are well-

positioned to apply the OWASP Abuse Case Cheat Sheet to generate plausible abuse scenarios. By

following the guidelines provided in the cheat sheet, our team conducted an abuse case development

workshop. The artifacts of this workshop are the abuse cases enumerated in Table 12.

40

Table 12: Abuse cases

Abuse Case Description

Sensitive Data Exposure
As an attacker, I steal keys that were exposed in the application

to get unauthorized access to the application or system.

Using Components with Known

Vulnerabilities

As an attacker, I find common open source or closed source

packages with weaknesses and perform attacks against vulner-

abilities and exploits which are disclosed.

Security Misconfiguration

As an attacker, I find unnecessary features which are enabled

or installed (e.g. unnecessary ports, services, pages, accounts,

or privileges) and attack or exploit the weakness.

Denial-of-service attack with anony-

mous accounts

Attackers can take advantage of the anonymity of the applica-

tion to attack the system by repeatedly opening a browser, or

overwhelm the web page.

Spread miss information

An attacker can simply edit port data deliberately to make

information wrong. This can be done unintentionally by a

user as well.

Unauthorized Access and Data

Tampering

As an attacker, I gain unauthorized access to manipulate geo-

graphical and port data, causing disruptions or safety risks.

SQL Injection

As an attacker, I exploit input fields to inject SQL queries,

manipulating the database and leading to data theft or cor-

ruption.

Cross-Site Scripting (XSS)
As an attacker, I exploit XSS vulnerabilities to inject scripts,

stealing cookies or redirecting users to malicious sites.

Cross-Site Request Forgery (CSRF)
As an attacker, I trick users into making requests that alter

port data, exploiting lack of CSRF protection.

Man-in-the-Middle (MitM) Attack
As an attacker, I intercept unencrypted communications to

access or alter sensitive information.

API Security Flaw Exploitation
As an attacker, I exploit insecure APIs to access or corrupt

data.

9.2.4 Identification and ranking of risks

Each identified business and technical risk is evaluated and assigned a likelihood, impact, and

overall risk rating. These ratings are categorized as low (L), medium (M), or high (H). Taking into

account the business context, the application’s design, and the profile of the probable attacker, we

have pinpointed the primary business risks (BR), which are cataloged in Table 13.

41

Table 13: Business Risks

Business Risks

ID Description Likelihood Impact Risk

BR1 Application data M M M

accessed by unauthorized users

BR2 Application is not user friendly L H M

BR3 Possibility to edit without authorization L H M

BR4 High cost of maintaining the system L M M

BR5 Low availability of application L M M

BR6 Application is not useful L M L

The technical risks have been identified, prioritized, and correlated with their corresponding busi-

ness risks in Table 14. While this list is not comprehensive, it highlights the most significant risks

pertinent to the application’s architecture and the characteristics of a potential attacker. Specifi-

cally, the emphasis is on high-level network threats such as request tampering, packet sniffing, and

injection attacks. Additionally, we propose a mitigation strategy for each identified risk.

Table 14: Technical Risks

Technical Risks

ID Description Likelihood Impact Risk Mitigation Strategy

Related

Business

Risk

TR1

Vulnerability to SQL

injection or XSS

through user inputs

M H H

Implement rigorous input

validation protocols and

regular security patch up-

dates

BR1, BR3

TR2

Potential exposure of

sensitive data in source

code

L H M

Enforce a strict policy

against hardcoding pass-

words/API keys

BR1

TR3

Risk of unencrypted

traffic leading to data

exposure

L H M

Implement mandatory

TLS/SSL encryption for

all data transfers

BR1

TR4

Exceeding API rate

limits due to CSRF at-

tacks

L H M

Establish a robust CORS

policy limited to autho-

rized frontends

BR5

TR5
Issues due to complex

or suboptimal code
M M M

Adhere to industry-

standard coding practices

and regular code reviews

BR2,

BR3,

BR4, BR5

TR6

User interface design

not meeting user ex-

pectations

M M M

Commit to standard UI

design guidelines and us-

ability testing

BR2, BR6

42

9.3 Fixes and validation

The final phase of the Risk Assessment framework involves implementing solutions to address the

identified technical risks and establishing tests to confirm the effectiveness of these fixes. The

details of this process, including the outcomes and validation tests, are documented in Table 15.

Table 15: Implemented Solutions and Their Validation Methods and Outcomes

ID Implemented Solution Validation Method and Outcome

TR1 Validated all input fields

Monitored logs for SQL injection attempts; no

such attacks detected. Also ensured to never

set innerHTML directly with user input to

prevent XSS attacks.

TR2 Conducted thorough code review
Verified absence of exposed tokens in the code-

base

TR3 Ensured all endpoints use HTTPS
Performed requests and inspected messages

for secure transmission

TR4
Set CORS policy to allow only frontend

requests

Executed requests from different origins to

test CORS policy enforcement

TR5

Established continuous integration with

GitHub Actions for build and unit test-

ing

Confirmed smooth build process and passed

all unit tests without issues

TR6

Interactive feedback gathering from

customers and stakeholders (Accep-

tance Testing)

Received positive feedback, particularly on UI

design aspects

10 Testing

Testing has many purposes in software development. The most obvious benefit is to detect and

fix bugs, but it can also serve a crucial role in requirement analysis and validation. Going into the

project the customer emphasized that the product should mainly be a prototype, meaning that it

did not need to work perfectly. Regardless we still wanted the product to be free of any major bugs

or vulnerabilities. Therefore we employed four main testing strategies during the project, which

we will describe in the following sections. These strategies can be linked to quadrants 1 and 3 of

the Agile Testing Quadrants by Crispin & Gregory (2008).

10.1 Exploratory testing

Exploratory testing is a manual testing strategy where developers try to use the system in the same

way as end users, guided mainly by creativity, intuition and critical thinking (Crispin & Gregory,

2008, 102). The team used exploratory testing while developing new features to go beyond the

obvious variations that are already captured by unit tests. In our case we also needed to use

a lot of exploratory testing to figure out how to use NGIS-OPENAPI. This involved reading the

documentation thoroughly, sending example requests to the API to see what data we received with

a lot of trial and error.

Another major benefit we noticed is that exploratory testing highlighted quite a few new ideas

and potential features that we ended up including in the backlog and developing in future sprints.

An example of this is how we noticed that it would be very useful to have tooltips that explain

43

different properties of objects being created, since they would otherwise require some technical

knowledge to understand.

10.2 Unit testing

Unit testing is an automated way of testing small, isolated components or ”units” to make sure

they work as intended. They belong in quadrant 1 of the Agile Testing Quadrants, meaning they

are tests that support the team. The reason for this is that they help avoid unintended changes

to the rest of the system when implementing new features, as this would hopefully break existing

unit tests (Crispin & Gregory, 2008, p. 99). This creates a safety net for developers to confidently

make changes without worrying about breaking the application. We did not have a specific code

coverage goal in mind when writing unit tests. Instead we mainly focused on utility functions that

were used multiple places.

Vitest was chosen as our unit testing framework as it was easy to configure with our existing build

tool (Vite), and unit tests ran automatically on each commit with Husky precommits. We also set

up a continuous integration pipeline with Github actions to build the application and run unit tests.

This was automatically run on pull requests to the develop branch to ensure that it would always

be in a stable state. Overall we did not have a huge focus on unit testing and automated tests

during the project, as we found manual testing strategies such as exploratory testing sufficient.

10.3 Acceptance testing

During some customer meetings, usually after a sprint, the team had an informal showcase of the

current state of the product. This allowed the customer to give feedback and further clarify their

intentions for how the application should work. The team experienced that some existing tasks

were modified, and a few new issues were created as a result of this feedback.

10.4 Usability testing

Usability testing is an important procedure to discover requirements and demands from the users

of the system. It helps the designers measure the usability of a system or product in cooperation

with the actual users (Niranjanamurthy et al., 2014). The team was interested in the systems

efficiency, which can be described as how well the system supports the user in performing specific

tasks.

In advance of the usability tests, a script with tasks was prepared for the person conducting the

test, which described specific scenarios a typical end user might encounter. These scripts can be

viewed in Appendix 20.

To prepare for the tests, the team held a meeting and discussed which key features in the application

would be valuable to get feedback on. After discovering these features the team made a Figma

prototype. This prototype resembled the actual map client, but had further functional and design

solutions that were not fully implemented. This allowed the team to test the user experience of

certain features before spending more time implementing them in the actual product. Additionally,

the Figma prototype later served as a wireframe, or blueprint for how the GUI should be designed

in the end product.

44

https://vitest.dev/
https://typicode.github.io/husky/
https://www.figma.com/file/XcQRHuxuL4SIzqSrpYczYU/Utkast-kartklient?type=design&node-id=0%3A1&mode=design&t=l5oWxy8TRdpae45B-1
https://www.figma.com/file/XcQRHuxuL4SIzqSrpYczYU/Utkast-kartklient?type=design&node-id=0%3A1&mode=design&t=l5oWxy8TRdpae45B-1

11 Internal and External Documentation

In the following sections we will go over all the different types of internal and external documen-

tation that were used. By internal documentation we mean all the documents that were used

with the purpose of assisting the development team and communicating with the supervisor and

customer. External documentation on the other hand is targeted at explaining different aspects

of the product to external parties such as potential users, the examiner, and anyone else who may

be interested in our project.

11.1 Internal documentation

• Meeting documents: Meetings were separated into three main categories: development

team meetings, supervisor meetings, and customer meetings. A single Google docs document

for each category was used to summarize what we discussed during the meetings. An agenda

was created before each meeting with a predefined template, which can be found in Appendix

E.

• Sprint retrospectives: As mentioned in Section 4.2.9, we used RetroTool to conduct and

document our all our retrospectives.

• Github issues were used as the primary tool for documenting requirements related to

product functionality, and also coordinating work within the team. Grouping issues by

different statuses as described in Section 4.3 gave a further overview of the progress made in

a sprint. We also grouped issues in specific Github milestones that contain small summaries

for the goal of their corresponding sprint.

• Code comments: Wemostly followed the principle that ”good code should be self-documenting.”

Adding line comments simply describing what the code is doing is completely useless in most

cases (Sourour, 2017). Instead we focused on documenting functions in a standard format

with JSDoc when we felt like code documentation was necessary.

• CONTRIBUTING.md: Contributing guidelines were created on Github early on in the

project to serve as a reference for everything we agreed on related to code style, commits,

and workflow. This document can also be used by future developers on the project if they

want to adapt the same conventions that we did.

• Decision log: To keep track of important decisions related to functionality, technology,

and teamwork, we documented them in a shared table along with additional background

information for the decision, the decision taker(s), and date. The idea was also that the

customer and future developers have all the relevant context for why things were done the

way they were. The full decision log can be viewed in Appendix D.

11.2 External documentation

A temporary deployment of the product can be viewed at https://folk.ntnu.no/eriksalv/

TDT4290-leaflet-client/. This version captures the state of the product at the end of the

student project. If development continues later on, the application will most likely be deployed

somewhere else. For those who want to run the project locally instead, all documentation related

to this is contained in the README file on the project’s Github page. For the sake of convenience

we have also included this information in Appendix B. A user manual for all product functionality

can be found in Appendix C.

45

https://retrotool.io
https://jsdoc.app/
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/blob/develop/CONTRIBUTING.md
https://folk.ntnu.no/eriksalv/TDT4290-leaflet-client/
https://folk.ntnu.no/eriksalv/TDT4290-leaflet-client/
https://github.com/digitalhavn/prototype-redigeringsklient-ngis/blob/develop/README.md

12 Self-Evaluation

We will now go over some reflections about the project as a whole, such as how we worked together,

what we learned, what went well, what did not go so well, and our experiences with the customer

and supervisor. We will also present some potential future work for the project, and feedback for

the course.

12.1 Working Together as a Team

We collaborated and communicated effectively as a team, maintaining a positive dynamic and great

team spirit throughout the entire project. Notably, we successfully avoided any personal conflicts.

We effectively addressed uncertainties as they arose, engaging in professional and inclusive group

discussions. Encouraging everyone to voice their opinions, we navigated through different per-

spectives, not always reaching an immediate consensus but consistently arriving at solutions that

satisfied everyone after thorough discussion.

Although our team collaboration was successful, in hindsight, we recognize that we could have done

better in getting to know each other more personally. While some group members were acquainted

before the project, none of us knew each other well. Early on, we discussed the idea of fostering

stronger connections through social activities outside of school, but unfortunately, this was never

prioritized. Our differing academic schedules and social commitments made it challenging to find a

suitable time. Looking back, we realize that with a bit more effort, we could have made it happen,

something we wish we had attempted. We did manage to have a social lunch at school once, where

we intentionally focused on topics unrelated to school. This experience positively impacted our

team spirit, providing a valuable opportunity to deepen our understanding of each other, especially

considering the significant time we spent together on this project throughout the semester.

12.2 The Work We Are Proud of

One thing we really nailed throughout the project, although we sort of lost our groove towards the

end due to illness, was our group work sessions. We firmly believe that these in-person sessions

played a crucial role in our success and contributed to maintaining a positive team dynamic.

Additionally, we take pride in our adaptability at planning and distributing tasks within our team.

Our commitment to the seriousness of sprint planning sessions laid a robust foundation for achieving

optimal success in each sprint. We made a conscious effort to allocate work efficiently, ensuring

that team members received tasks aligned with their strengths and preferences. This approach not

only promoted a harmonious work environment but also prevented any team member from feeling

overburdened.

We were good at conducting sprint retrospectives, believing that, like planning, it would establish

a strong foundation for the next sprint. We allocated time and meticulously planned to ensure the

participation of everyone in the group. Our retrospectives were carried out in a serious manner,

and we felt that we generated valuable action points for the upcoming sprint. However, one

challenge we faced was consistently implementing these action points in subsequent sprints, such

as reserving technical demos of the product on Fridays after Sprint 1. We recognize that this might

be attributed to the lack of repetition and reminders within the group.

46

12.3 Reflecting on Project Challenges

We acknowledge that our performance in code testing and project security fell short of our expec-

tations. Reflecting on the project, we realize the need for more collective enforcement of the test

plan. The initial stages were challenging, with numerous new considerations, leading to oversight

on testing and security. Recognizing this, we made concerted efforts to address these aspects in

the latter half of the project.

Looking back, we acknowledge that reassessing our team’s capacity and distributing the workload

more evenly could have been a prudent choice. Nevertheless, the experience taught us valuable

lessons in capacity assessment, and how to implement new templates and standards. If afforded

more time, we believe we could have demonstrated what we learned more in depth.

12.4 The Customer

Our communication with the customer was satisfactory, despite most of the meetings being remote.

Primarily, the team lead took charge of interactions such as scheduling meetings and sending

agendas. However, they actively encouraged all group members to pose questions independently,

fostering an open line of communication. The customer displayed good responsiveness to emails and

Teams messages. Moreover, they were approachable and provided encouraging feedback, making us

feel respected as a group. They were also very helpful in pointing us in the right direction regarding

the technical solution, including recommended libraries, and online tutorials and documentation.

In hindsight, if given the opportunity to redo the project, we might consider establishing fixed

meeting times with the customer every other week. This could have streamlined the planning

process and eliminated the need to consistently remember and schedule meetings.

12.5 The Project Assignment

The client’s project assignment, displayed in Appendix F, offered valuable and well-detailed infor-

mation, providing a solid foundation for our task. The project description was beneficial, reflecting

the client’s thoughtful input. We heavily relied on it at the project’s start, appreciating its thorough

completion.

We noted that ”AI” was selected under ”The Technology to be exploited in the project.” Initially,

we assumed this meant developing a large-scale AI solution for the product. However, there was

little mention of the machine learning aspect when presented the project, so we asked for more

clarification on the topic during the next customer meeting. After a more detailed conversation

with the customer, it became clear this was more of a low priority task to potentially do if we had

the time.

12.6 The Supervisor

As detailed in Section 2, we maintained weekly meetings, where her support was invaluable, and

her positive attitude greatly contributed to our collaborative environment. Whenever we sought

assistance, she consistently provided helpful answers and guidance, offering valuable advice and

tips throughout the project. She was for instance happy to give feedback and prepare us for the

FOSS4G conference, and gave us concrete tips for the report. As a group, we were satisfied with

the level of supervision.

47

Reflecting on our experiences, one aspect we discussed for potential improvement involves clarifying

the purpose of supervisor meetings. Initially, there was some ambiguity surrounding the goals of

these sessions, but over time, the purpose became clearer. We believe a more defined understanding

of the meeting objectives from the outset could enhance the overall effectiveness of the supervision

process.

12.7 Future work

The goal of the project was to produce a prototype for a map application that allowed the user to

view and manipulate geographical port data, as detailed by our functional requirements in Table

5. Additionally, the product needed to be user friendly as this is the main issue with existing

applications.

The team believes the final product meets all the requirements in a satisfying manner. This view

was further reinforced through feedback from the customer as well. However, there is still room for

further work on the product. The list below presents what can be further worked and improved

upon:

• Implement a 3D map client with CesiumJS to visualize data from NGIS along with depth

data. This was one of the optional subgoals presented by Norkart initially.

• Some form of user management and authentication, mainly for security, as well as giving

individual users different rights. This would remove the need for hiding API credentials

through a proxy.

• A log of user activity, i.e., who has edited what and when, and a comment section to com-

municate with coworkers, as suggested in the interview with the Port of Arendal (see Section

3.7.3). This would likely require the proxy to be extended with a database.

• Design the map client for smaller screens. We only had large screens like desktops and laptops

in mind when designing the GUI, as this was seen as the most prominent use case. However

it would still be a good practice to make the design more mobile-friendly.

• Add additional filtering of the data shown. Sometimes the user could be interested in only

viewing the objects with a certain field value. Adding customizable filters could make the

experience faster and smoother.

• Add more visualization of the data on the map, such as highlighting which objects are ”In

use” or similar. This should be apparent to the user without the need for clicking the object

to manually check.

12.8 Suggestions for Improvement

The training sessions on AI, Diversity, and Sustainability should have been extended to include all

students, not just the group leaders. We found it somewhat odd that only one person from each

group, the team lead, received information on these crucial aspects during group lead meetings.

Considering that these are new additions to the course and account for 15% of the final grade,

we believe that all group members should have been informed. It could have been beneficial to

organize lectures for all the students, where these topics are thoroughly covered.

Moreover, we feel that insufficient time was allocated to learn about AI, Diversity, and Sustainabil-

ity during group lead meetings. The extensive discussion of each point in the Word document left

48

https://cesium.com/platform/cesiumjs/

little time for the main agenda. Additionally, the expectations regarding the topics team leaders

should cover in these meetings were somewhat unclear.

To enhance the efficiency and focus of our group lead meetings, our team discussed a proposal

where each group shares one of their successful practices as a helpful tip for others, in addition

to discussing any challenges they are currently encountering. Furthermore, we agreed it would

be unnecessary for each group to detail aspects like meeting schedules, since these are already

comprehensively documented and available for reference when needed.

49

References

Agile Alliance. (2023, March 13). What is collective code ownership? Retrieved from https://www

.agilealliance.org/glossary/collective-ownership/

Altexsoft. (2021, January 18). Extreme programming: values, principles, and practices. Retrieved from

https://www.altexsoft.com/blog/extreme-programming-values-principles-and-practices/

Anthony Jnr, B., Che Pa, N., Khalefa, M., Alasad, H., & Zmezm, H. (2016, 07). A proposed risk assessment

model for decision making in software management. Journal of Soft Computing and Decision Support

Systems, 3 , 31-43.

Arend, R. J., Zhao, Y. L., Song, M., & Im, S. (2017). Strategic planning as a complex and enabling

managerial tool. Strategic Management Journal , 38 (8), 1741-1752.

Atlassian. (n.d.-a). Gitflow workflow — atlassian git tutorial. Retrieved from https://www.atlassian

.com/git/tutorials/comparing-workflows/gitflow-workflow (n.d.)

Atlassian. (n.d.-b). Trunk-based development. Retrieved from https://www.atlassian.com/continuous

-delivery/continuous-integration/trunk-based-development (Atlassian. (n.d.-b))

Bass, L., Clements, P., & Kazman, R. (2021). Software architecture in practice (4th ed.). Pearson

Addison-Wesly.

Brundtland, G. H. (1987). Report of the world commission on environment and development: Our common

future.

Burnett, M., Stumpf, S., Makri, S., Macbeth, J., Beckwith, L., Kwan, I., . . . Jernigan, W. (2016).

Gendermag: A method for evaluating software’s gender inclusiveness. Interacting with Computers. doi:

10.1093/iwc/iwv046

Capiluppi, A., & Jaccheri, L. (2023, 9 25). Booting and Rebooting Academia-Industry Collaborations

within Software Engineering Courses. IEEE Software.

Condori-Fernandez, N., & Lago, P. (2018). Characterizing the contribution of quality requirements to

software sustainability. Journal of Systems and Software, 137 , 289–305.

Crispin, L., & Gregory, J. (2008). Agile testing: A practical guide for testers and agile teams (1st ed.).

Addison-Wesley Professional.

Dönmez, D., Grote, G., & Brusoni, S. (2016). Routine interdependencies as a source of stability and

flexibility: A study of agile software development teams. Information and Organization, 26 (3), 63-83.

GeeksforGeeks. (2023, November 2). Waterfall model software engineering. Retrieved from https://

www.geeksforgeeks.org/waterfall-model/

Google. (2022). Diversity annual report - google diversity equity & inclusion. Retrieved from https://

about.google/belonging/diversity-annual-report/2022/

Han, W.-M., & Huang, S.-J. (2007). An empirical analysis of risk components and performance on software

projects. Journal of Systems and Software, 80 (1), 42-50. Retrieved from https://www.sciencedirect

.com/science/article/pii/S0164121206001440 doi: https://doi.org/10.1016/j.jss.2006.04.030

Heijstek, W., & Chaudron, M. (2008, September). Evaluating rup software development processes through

visualization of effort distribution. In 2008 34th euromicro conference software engineering and advanced

applications (p. 266-273).

Hirshfield, L., & Koretsky, M. D. (2017). Gender and participation in an engineering problem-based

learning environment. IJPBL.

Iso 9001:2015. (2015, September 1). Retrieved from https://www.iso.org/iso-9001-quality

-management.html

50

https://www.agilealliance.org/glossary/collective-ownership/
https://www.agilealliance.org/glossary/collective-ownership/
https://www.altexsoft.com/blog/extreme-programming-values-principles-and-practices/
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/continuous-delivery/continuous-integration/trunk-based-development
https://www.atlassian.com/continuous-delivery/continuous-integration/trunk-based-development
https://www.geeksforgeeks.org/waterfall-model/
https://www.geeksforgeeks.org/waterfall-model/
https://about.google/belonging/diversity-annual-report/2022/
https://about.google/belonging/diversity-annual-report/2022/
https://www.sciencedirect.com/science/article/pii/S0164121206001440
https://www.sciencedirect.com/science/article/pii/S0164121206001440
https://www.iso.org/iso-9001-quality-management.html
https://www.iso.org/iso-9001-quality-management.html

Jaccheri, L. (2023, August 23). Compendium. Retrieved from https://miro.com/blog/scrum-kanban

-boards-differences/ (Course compendium found on BlackBoard,)

Kalla, D., & Smith, N. (2023). Study and Analysis of Chat GPT and its Impact on Different Fields of

Study. International Journal of Innovative Science and Research Technology , 8 (3).

Kniberg, H. (2007). Scrum and xp from the trenches: Enterprise software development. Lulu.com eBooks.

Retrieved from http://dl.acm.org/citation.cfm?id=1554790

Kruchten, P. (1995, November). Architectural blueprints - the 4+1 view model of software architecture.

IEEE Software(12(6)), 42-50.

McDonald, K. (2023, October 19). What is extreme programming (xp)? Retrieved from https://

www.agilealliance.org/glossary/xp/

McGraw, G. (2005). The 7 touchpoints of secure software. Retrieved 2023-11-07, from https://www

.drdobbs.com/the-7-touchpoints-of-secure-software/184415391

McGraw, G. (2022). Risk management framework (rmf). Retrieved 2023-11-07, from https://

www.cisa.gov/uscert/%20bsi/articles/best-practices/risk-management/risk-management-%

20framework-%5C%28rmf%5C%29

Microsoft. (2009). The stride threat model. Retrieved 2023-11-07, from https://learn.microsoft.com/

en-us/previous-versions/commerce-server/ee823878(v=cs.20)

Microsoft. (2023). Diversity & inclusion report. Retrieved from https://www.microsoft.com/en-us/

diversity/inside-microsoft/annual-report?activetab=innovation-spotlights:primaryr4

MiroBlog. (2023, September 17). Kanban vs. scrum boards: 11 major differences. Retrieved from https://

miro.com/blog/scrum-kanban-boards-differences/

Nguyen-Duc, A., Jaccheri, L., & Abrahamsson, P. (2019). An empirical study on female participation in

software project courses. IEEE/ACM 41st International Conference on Software Engineering .

Niranjanamurthy, M., Nagaraj, A., Gattu, H., & Shetty, P. K. (2014). Research study on importance of

usability testing/user experience (ux) testing. International Journal of Computer Science and Mobile

Computing(3(10)), 78-85.

Norkart. (2023). Norkart.no. Retrieved 2023-11-17, from https://www.norkart.no/

Oslo Havn. (2023). 10,5 millioner i støtte til digitalisering av norske havner. Retrieved 2023-11-

20, from https://www.oslohavn.no/no/aktuelt/105-millioner-i-stotte-til-digitalisering-av

-norske-havner/

OWASP. (2021). Owasp top 10. Retrieved 2023-11-07, from https://owasp.org/Top10/

OWASP. (2023). The owasp risk assessment framework. Retrieved 2023-11-07, from https://owasp.org/

www-project-risk-assessment-framework/

Pham, Y. D., Bouraffa, A., & Maalej, W. (2020, August). Shapere: Towards a multi-dimensional represen-

tation for requirements of sustainable software. In 2020 ieee 28th international requirements engineering

conference (re) (p. 358-363). IEEE.

Rehkopf, B. M. (n.d.). What is a kanban board? Retrieved from https://www.atlassian.com/agile/

kanban/boards

Satell, G. (2019, May 19). How to make an ai project more likely to succeed. Retrieved from https://

hbr.org/2018/07/how-to-make-an-ai-project-more-likely-to-succeed

ScrumAlliance. (n.d.). What is scrum: a guide to the most popular agile framework. Retrieved from

https://www.scrumalliance.org/about-scrum (n.d.)

Sommerville, I. (2016). Software engineering. Pearson Education Limited.

51

https://miro.com/blog/scrum-kanban-boards-differences/
https://miro.com/blog/scrum-kanban-boards-differences/
http://dl.acm.org/citation.cfm?id=1554790
https://www.agilealliance.org/glossary/xp/
https://www.agilealliance.org/glossary/xp/
https://www.drdobbs.com/the-7-touchpoints-of-secure-software/184415391
https://www.drdobbs.com/the-7-touchpoints-of-secure-software/184415391
https://www.cisa.gov/uscert/%20bsi/articles/best-practices/risk-management/risk-management-%20framework-%5C%28rmf%5C%29
https://www.cisa.gov/uscert/%20bsi/articles/best-practices/risk-management/risk-management-%20framework-%5C%28rmf%5C%29
https://www.cisa.gov/uscert/%20bsi/articles/best-practices/risk-management/risk-management-%20framework-%5C%28rmf%5C%29
https://learn.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://learn.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://www.microsoft.com/en-us/diversity/inside-microsoft/annual-report?activetab=innovation-spotlights:primaryr4
https://www.microsoft.com/en-us/diversity/inside-microsoft/annual-report?activetab=innovation-spotlights:primaryr4
https://miro.com/blog/scrum-kanban-boards-differences/
https://miro.com/blog/scrum-kanban-boards-differences/
https://www.norkart.no/
https://www.oslohavn.no/no/aktuelt/105-millioner-i-stotte-til-digitalisering-av-norske-havner/
https://www.oslohavn.no/no/aktuelt/105-millioner-i-stotte-til-digitalisering-av-norske-havner/
https://owasp.org/Top10/
https://owasp.org/www-project-risk-assessment-framework/
https://owasp.org/www-project-risk-assessment-framework/
https://www.atlassian.com/agile/kanban/boards
https://www.atlassian.com/agile/kanban/boards
https://hbr.org/2018/07/how-to-make-an-ai-project-more-likely-to-succeed
https://hbr.org/2018/07/how-to-make-an-ai-project-more-likely-to-succeed
https://www.scrumalliance.org/about-scrum

Sourour, B. (2017, April 20). Putting comments in code: the good, the bad, and the ugly. Re-

trieved from https://www.freecodecamp.org/news/code-comments-the-good-the-bad-and-the-ugly

-be9cc65fbf83/

Vaughan-Nichols, S. J. (2003). Building better software with better tools. Computer , 36 (9), 12-14.

Westland, J. (2023, October 30). The quality assurance process: Roles, methods & tools. Retrieved from

https://www.projectmanager.com/blog/quality-assurance-and-testing

52

https://www.freecodecamp.org/news/code-comments-the-good-the-bad-and-the-ugly-be9cc65fbf83/
https://www.freecodecamp.org/news/code-comments-the-good-the-bad-and-the-ugly-be9cc65fbf83/
https://www.projectmanager.com/blog/quality-assurance-and-testing

A Project goals as presented by the customer

Figure 10: The overall goal of the bigger project this project is a part of

Figure 11: The project plan as proposed by the customer

B Installation guide

The following guide describes how to run the application locally. If you just want to view the ap-

plication, we recommend visiting https://folk.ntnu.no/eriksalv/TDT4290-leaflet-client/

instead. Also note that credentials are required to access data from NGIS-OpenAPI. This can only

be provided by a data owner. However if you don’t have credentials, and are not interested in

editing data you can still follow the guide below to view the map with WMS data (images).

Prerequisites

53

https://folk.ntnu.no/eriksalv/TDT4290-leaflet-client/

• Use Windows, macOS, or Linux

• Have git installed

• Have Node.js installed

Clone remote git repository

1. git clone https://github.com/digitalhavn/prototype-redigeringsklient-ngis.git

2. Navigate into the root project folder: cd prototype-redigeringsklient-ngis

Install dependencies

From the root folder run: npm install to install dependencies for both leaflet-client and proxy at

the same time.

Optional: run proxy

1. Create a file called .env inside the proxy folder with the following variables:

⋆ NGIS URL: URL for the server hosting NGIS-OpenAPI

⋆ NGIS USERNAME: Username to access NGIS-OpenAPI

⋆ NGIS PASSWORD: Password to access NGIS-OpenAPI

2. Run npm run dev -w proxy from the root folder

Run frontend leaflet client

From the root folder run: npm run dev -w leaflet-client

Alternatively, both leaflet-client and proxy can be run at the same time from the root folder with

npm run dev

Run leaflet client locally without proxy

If you don’t have credentials for a server running NGIS-OpenAPI, you can still run leaflet-client

locally by pointing it to the proxy deployed to Microsoft Azure. This can be done automatically

by building leaflet-client for production:

1. From the root folder run: npm run build -w leaflet-client

2. npm run preview -w leaflet-client

C User manual

C.1 Start screen

• Reset the location and zoom of the map back to the initial position by clicking the button

marked ”Reset map” in Figure 12

• Change the dataset (port) to fetch data from by changing the input marked ”Change dataset”

in Figure 12. Note that attempting to fetch data outside of the selected dataset boundaries

will result in an error.

54

https://git-scm.com/
https://nodejs.org/en

• Search for addresses and move the maps location to a specific address by using the search

input marked ”Search address” in Figure 12.

• Switch the tile layer of the map, or toggle symbol and depth WMS layers in element marked

”Tile/WMS layer control” in Figure 12

Figure 12: Start screen

C.2 Display data layers

The application will initially load data from NGIS-OpenAPI based on the area that is visible on

the map. After moving the map to a new location, it will load in new data, as indicated by a

loading spinner. To actually display this data, you have to enable specific features in the ”Layer

control” marked in Figure 12. This layer control is split into two main sections: points (markers),

and lines + polygons. Open up one of these sections by clicking on it. This will create a dropdown

of all feature types that are displayable within that section. Click on the checkbox for a feature

type to display all the objects of that type of the map. Figure 13 shows a snippet of the map after

enabling the ”Fortøyningsinnretning” type.

55

Figure 13: Display data

C.3 Display and edit feature details

After displaying features on the map, they can be clicked to display detailed information about that

specific feature. Figure 14 shows the details of a ”Fortøyningsinnretning” and its corresponding

location on the map. 14.

56

Figure 14: Feature details

To edit the details, simply change one or more of the input elements that are editable, and click

the Save-button in Figure

C.4 Delete a feature

After displaying the details of a feature, you can click the Delete-button in 14 to delete the entire

feature. This will first open up a modal to confirm that you want to delete it or not.

C.5 Create a new feature

Click the button marked with ”Create object” in Figure 12 to open up a modal, which initially

contains a single input to choose what type of feature you want to create. Choose a specific feature

type to generate additional inputs where you can enter the details you want to, as shown in Figure

15 with the ”Beredskapspunkt” type. You can hover over any of the input labels to display a tooltip

containing additional information about the meaning and purpose of specific inputs. Inputs that

are required are marked with a red star (*).

57

Figure 15: Modal for creating a new feature

After adding information, create the feature clicking the button at the bottom of the modal (you

may need to scroll down). This will close the modal and let you click on a point on the map to

place the feature.

C.6 Move features around

NOTE: Only editing the geometry of points/markers is currently supported.

Start by clicking the button marked ”Edit map” in Figure 12 to enter the map into edit-mode.

You will then be able to drag displayed features around on the map. When you are done moving

features around, click the Save-changes button marked in Figure 16 to confirm the changes with

NGIS-OpenAPI, or click the Undo-changes button to reset the changed features back to their

original locations.

58

Figure 16: When inside edit mode, features become draggable, and two new buttons are added to

the header to confirm or undo changes to the map

C.7 Configuration

The application exposes a few configuration options through environment variables to tailor its

experience to whoever is hosting it. Table 16 shows all the possible configuration options, and

what their purpose is. Read the projects README for more details.

Table 16: Configuration options

Name Purpose

VITE MAPTILES API KEY API key to access Norkart’s webatlas maptiles

VITE START LOCATION LAT Start location latitude for leaflet map

VITE START LOCATION LNG Start location longitude for leaflet map

VITE START ZOOM Start zoom for leaflet map

VITE NGIS DEFAULT DATASET Default NGIS-OpenAPI dataset to fetch data from initially

NGIS URL URL pointing to a server hosting NGIS-OpenAPI

NGIS USERNAME Username for accessing NGIS-OpenAPI

NGIS PASSWORD Password for accessing NGIS-OpenAPI

D Decision log

Table 17 contains all important choices made in the course of the project.

Table 17: Decision log

Decision Background Decision taker Date

Mandatory meetings mondays

09-14, and wednesdays with

supervisor

Vital to have a timeframe where

everyone can participate in meetings

All 04.09

Optional meetings on fridays

08-16
To work on issues together. Come

and go as you want.

All 04.09

59

https://github.com/digitalhavn/prototype-redigeringsklient-ngis#readme

15 minutes daily standup on

mondays and fridays
Short status check to plan and adjust

what to continue working on

All 04.09

Github projects for project

management
Preferred by the customer. All 04.09

Use Figma for mockups Great tool, and we have experience

using it before.

All 04.09

Hold a presentation about

project 25. october at

FOSS4G

Suggested by the customer, and we

thought it was a great opportunity

All 07.09

The start location for the map

client should be configurable
Makes it more convenient if the web

page is embedded on specific websites

for different ports

Norkart 07.09

Use test server from kartverket Norkart set up credentials for us to

read and write data on a non

production test server to use during

development.

All 11.09

Use Typescript on both fron-

tend and backend
Javascript is required on the frontend

for leaflet, and Typescript has

additional benefits with static typing.

Using the same language on both

front and back makes it easier for all

team members to quickly learn the

prerequisites to contribute since we

have limited time.

All 11.09

Don’t use any framework on

the frontend
Leaflet already handles the map GUI,

and the application will only contain

one page (the map), which makes

frameworks like react or vue less

beneficial. There will probably be a

little more work without a framework,

however the application will probably

also be more performant, and we have

greater control.

All 11.09

Use express js framework on

proxy
Minimal, easy to work with. It is

probably overkill to use a framework

just for the proxy, but considering the

proxy is probably going to be

removed in the final product when

user authentication is implemented,

we want to spend minimal time on

this component.

Erik 11.09

Change daily standup from fri-

days to wednesdays
It was a bad idea to put daily

standups in an optional meeting.

All 17.09

Use Vitest for unit testing, and

husky precommits
Vitest modern and easy to integrate

with Vite. Husky precommits runs

unit tests and linting before a commit

is accepted to ensure code quality and

that nothing breaks.

All 25.09

Structure the project as a

monorepo with Lerna
Makes it possible to share commands

for building, testing, etc. between

frontend and backend since both are

written in Typescript

Erik 25.09

60

Portion the data from NGIS-

OpenAPI
Retrieving all available data at the

same time takes a long time, and

slows down the client. Firstly, we can

limit data to one dataset at a time,

and then further limit data to only

retrieve what is visible on the map.

All 09.10

Use leaflet draw for interactive

geometry editing
Recommended by customer All 09.10

Use AJV for JSON schema val-

idation
Popular and easy to use library. Jesper 13.10

Limit the scope of the student

project to exclude editing ge-

ometry of polygons

Customer mentioned that this is

much more complicated to implement

and not worth it for the prototype.

All 20.10

Exclude 3D visualization from

the student project and instead

focus on security if we have

time

We would rather focus on

implementing more functionality for

the 2D map client instead of starting

something completely new that we

may not have time to get working.

Customer also said that testing

security was more important

All 20.10

Use native leaflet event han-

dlers for interactive geometry

editing instead of leaflet draw

Couldn’t get leaflet draw to work

correctly, but managed to make

editing markers work just using leaflet

(but not linestrings).

Jesper, Erik 27.10

Use leaflet draw for placing

new objects on the map
Managed to get leaflet draw to work

for creating new markers and

linestrings. Planned to implement this

for editing existing features as well.

Erik 30.10

Use a multiselect to handle

“array” types in JSON schema
Some properties like

“beredskapstype” can have multiple

values at the same time

Eli 10.11

Created temporary deploy-

ment of project
Nice to have for stakeholders and

examiner to try out

All 14.11

61

E Meeting templates

E.1 Student meetings

Figure 17: Template for meetings held between students on mondays and fridays

62

E.2 Supervisor meetings

Figure 18: Template for meetings held between students and supervisor on wednesdays

63

E.3 Customer meetings

Figure 19: Template for meetings held between students and Norkart

64

E.4 Usability test meetings

Figure 20: Template for usability test meetings held between students and different ports

65

F Project assignment

66

6/1/23, 1:48 PM Submission of Project Proposals for the Course

https://forms.office.com/Pages/DesignPageV2.aspx?subpage=design&token=7ef51b70d12a44be8bb989965d006327&id=cgahCS-CZ0SluluzdZZ… 1/6

View results

Anonymous 36:59
Time to complete

74

Respondent

First Name * 1.

Alexander

Last Name * 2.

Nossum

Organization * 3.

Norkart

6/1/23, 1:48 PM Submission of Project Proposals for the Course

https://forms.office.com/Pages/DesignPageV2.aspx?subpage=design&token=7ef51b70d12a44be8bb989965d006327&id=cgahCS-CZ0SluluzdZZ… 2/6

Startup Company

NGO

Private Sector

Public Sector

Other

Organization Type * 4.

Number of Employees in your organization (Approx.) * 5.

250

Email address of the contact person * 6.

alexander.nossum@norkart.no

Mobile Number7.

41293632

Role of the contact person (CEO, CTO, Developer, Tester, Other) * 8.

Innovation manager

Title of the project * 9.

Leveraging spatial technologies in port management

6/1/23, 1:48 PM Submission of Project Proposals for the Course

https://forms.office.com/Pages/DesignPageV2.aspx?subpage=design&token=7ef51b70d12a44be8bb989965d006327&id=cgahCS-CZ0SluluzdZZ… 3/6

AI

Web Technology

Augmented Reality

Virtual Reality

IoT

Other

The Technology to be exploited in the project * 10.

Scrum

Waterfall

Extreme Programming

Lean programming

Other

 The process to be exploited in the project * 11.

6/1/23, 1:48 PM Submission of Project Proposals for the Course

https://forms.office.com/Pages/DesignPageV2.aspx?subpage=design&token=7ef51b70d12a44be8bb989965d006327&id=cgahCS-CZ0SluluzdZZ… 4/6

Abstract (Max. 200 words) * 12.

Port/shipping management is highly concentrated around the geographical aspects of a
port. Efficient communication of information from the port to the ships are essential. This
can be security aspects, capacity, depth/keel clearance. Several Norwegian ports have the
last years been laser scanned and made detailed digital twin models of - in addition to
highly detailed map objects of the port and the bathymetry. This enables digitalization of
the communcation, self-service solutions and also autonomous robots to handle
containers and similiar objects.

However, the port management systems do not integrate the digital twin models
efficiently. The task at hand is to develop smarter systems for port management that
incorporate a high degree of user friendlieness in addition to integrate the spatial
datasets and API's available to share, manage and update the digital twin model. If the
group have sufficient interest it is possible to also include machine learning aspects on
the actual datasets in order to better extract data from the digital twin and/or make smart
suggestions in the actual software system.

The project will require developing a system in cooperation with users and stakeholders
from both the port, Norkart, Kartverket and ship captains and is expected to be of real
value for the end users.

6/1/23, 1:48 PM Submission of Project Proposals for the Course

https://forms.office.com/Pages/DesignPageV2.aspx?subpage=design&token=7ef51b70d12a44be8bb989965d006327&id=cgahCS-CZ0SluluzdZZ… 5/6

Project description (Max. 1 page of 3000 characters) * 13.

Port/shipping management is highly concentrated around the geographical aspects of a
port. Efficient communication of information from the port to the ships are essential. This
can be security aspects, capacity, depth/keel clearance. Several Norwegian ports have the
last years been laser scanned and made detailed digital twin models of - in addition to
highly detailed map objects of the port and the bathymetry. This enables digitalization of
the communcation, self-service solutions and also autonomous robots to handle
containers and similiar objects.

However, the port management systems do not integrate the digital twin models
efficiently. The task at hand is to develop smarter systems for port management that
incorporate a high degree of user friendlieness in addition to integrate the spatial
datasets and API's available to share, manage and update the digital twin model. If the
group have sufficient interest it is possible to also include machine learning aspects on
the actual datasets in order to better extract data from the digital twin and/or make smart
suggestions in the actual software system.

The project will require developing a system in cooperation with users and stakeholders
from both the port, Norkart, Kartverket and ship captains and is expected to be of real
value for the end users.

The project goal is to create new web based, multi-tenant systems which integrates vast
amount of spatial data sets from the digital twin. Both geographic maps, in coordination
with tabular data and data sources from other related API's. The user interface will need
to be adaptable to different sets of users and include both a dashboard overview and an
advanced data management interface for updating different aspects of the port data set.

An important feature of the software system will be to share and collaborate between the
port and the ship captains/agents. This includes sharing views of the data - but likely also
to include annotations and sharing text/images in a dialog. Researching the user
requirements and what encompasses a minimum viable product is part of the task.

The project/group will be integrated in product development teams at Norkart and
expert stakeholders from Kartverket and Ports in Norway. The group is expected to be
part of scoping the project to fit the capacity of the group's capabilites.

Technology Constraints (Max. 1 page of 3000 characters) * 14.

The architecture will be required to be developed using Open Source technologies. The
data sets and management will largely be based on a modern national API-standard
called NGIS Open API which Norkart develops for Kartverket. There are a vast amount of
geospatial technology/libraries that can be used for developing the system. Likely there
will be a combination of Docker, PostgreSQL, Javascript libraries (Leaflet) and map based
platforms such as GeoNode, MapStore, GeoServer. The group will leverage several open
source components which will do the heavy lifting of the geospatial part which will
enable the group to focus and deliver rapidly on the innovative features of the system.

The group will in collaboration with Norkart agree on the technology architecture upon
start of the project.

6/1/23, 1:48 PM Submission of Project Proposals for the Course

https://forms.office.com/Pages/DesignPageV2.aspx?subpage=design&token=7ef51b70d12a44be8bb989965d006327&id=cgahCS-CZ0SluluzdZZ… 6/6

How does the project targets sustainability issues?15.

Ports are essential parts of trading between sea and land. Even small adjustments to the
efficiency of handling container ships and the required land based car operations have
major environmental impacts. One example from earlier projects is the effect of a new sea
depth measurements which enabled the ship to make one less round-trip back and forth
from Norway to Canada - every year.

There are a lot of other similar related impacts on sustainability in port management that
the project will touch upon.

 How does the project targets diversity issues?16.

Better digital communication will enable people from more backgrounds to be better
included in the dialog between ship and port.

Other Constraints (Max. 1 page of 3000 characters) * 17.

-

I confirm that I have understood the NTNU rules according to which,
the student has copyright to the assignment he/she writes. Having
copyright means deciding whether the work should be made available
to the public, e.g. by publishing through NTNU Open. It also means
that it is the student who decides whether the thesis can be copied,
but NTNU can take the necessary copies for carrying out censorship
and archiving. *

18.

Yes - we expect the outcome to be published open source.

G Group contract

Figure 21: Group contract written and signed at the start of the project. Part 1

73

Figure 22: Group contract. Part 2

74

Figure 23: Group contract. Part 3

75

H Results From Sprint Retrospectives

H.1 Sprint 1

Figure 24: Results from Retrospective Sprint 1: Liked and Learnt

Figure 25: Results from Retrospective Sprint 1: Lacked and Longed for

76

H.2 Sprint 2

Figure 26: Results from Retrospective Sprint 2: Liked and Learnt

Figure 27: Results from Retrospective Sprint 2: Lacked and Longed for

77

H.3 Sprint 3

Figure 28: Results from Retrospective Sprint 3: Liked and Learnt

Figure 29: Results from Retrospective Sprint 3: Lacked and Longed for

78

H.4 Sprint 4

Figure 30: Results from Retrospective Sprint 4: Liked and Learnt

Figure 31: Results from Retrospective Sprint 4: Lacked and Longed for

79

H.5 Sprint 5

Figure 32: Results from Retrospective Sprint 5: Liked and Learnt

Figure 33: Results from Retrospective Sprint 5: Lacked and Longed for

80

	List of Figures
	List of Tables
	Introduction
	Overall context
	Motivation
	Demands
	Results
	Resources

	Planning
	Project Schedule
	Team Organization
	Tools and Infrastructure
	Communication
	Code Repository and Coordination
	Coding
	Common workspace

	Quality Assurance
	Response time
	Routines
	Templates and Standards

	Risk Management
	Effort Registration

	Problem Space and Solution Space
	Problem space and business goals
	Data source, ownership, and IPR
	Goals and limitations for the student project
	Existing Solutions
	Desired Solution
	Evaluation criteria
	Market investigations
	Interview 1: Kartverket
	Interview 2: Port of Kristiansand
	Interview 3: Port of Arendal

	Technological solution
	Leaflet
	NGIS-OpenAPI
	Proxy
	TypeScript
	Vite

	Development Methodology
	Gitflow
	How We Implemented Gitflow and Its Benefits
	Choosing Gitflow

	Scrum
	Why Scrum?
	Drawbacks of Scrum
	Product Backlog
	Sprints and Sprint Planning
	Time Estimation
	Daily Scrum
	Scrum Master
	Sprint Review
	Sprint Retrospective

	Kanban Board
	Why Kanban?
	Extreme Programming
	Extreme Programming Practices
	Why Extreme Programming

	Innovation
	Sustainability
	Focus within the project
	Social sustainability
	Technical sustainability
	Economical sustainability
	Environmental sustainability

	Diversity
	Diversity in the process: Team dynamics
	Diversity in the Product: Usability

	Artificial Intelligence
	Customer demands
	Usage of AI tools

	Requirements Specification
	Functional Requirements
	Non-functional requirements
	Usability
	Modifiability
	Security

	Architecture
	Architectural Tactics and Patterns
	Tactics
	Patterns

	Architectural Views
	Logical View
	Process View
	Development View
	Physical View

	Issues

	Sprints
	Sprint 1 - Design
	Sprint 1 Planning
	Sprint 1 Implementation
	Sprint 1 Review

	Sprint 2 - Create Map Client
	Sprint 2 Planning
	Sprint 2 Implementation
	Sprint 2 Review

	Sprint 3 - Edit functionality on properties
	Sprint 3 Planning
	Sprint 3 Implementation
	Sprint 3 Review

	Sprint 4 - Edit functionality on geometries
	Sprint 4 Planning
	Sprint 4 Implementation
	Sprint 4 Review

	Sprint 5 - Finalize the project
	Sprint 5 Planning
	Sprint 5 Implementation
	Sprint 5 Review

	Security
	Understanding the Business Context
	Risk identification, evaluation and mitigation strategy
	Application design
	Potential attackers
	Abuse cases
	Identification and ranking of risks

	Fixes and validation

	Testing
	Exploratory testing
	Unit testing
	Acceptance testing
	Usability testing

	Internal and External Documentation
	Internal documentation
	External documentation

	Self-Evaluation
	Working Together as a Team
	The Work We Are Proud of
	Reflecting on Project Challenges
	The Customer
	The Project Assignment
	The Supervisor
	Future work
	Suggestions for Improvement

	References
	Project goals as presented by the customer
	Installation guide
	User manual
	Start screen
	Display data layers
	Display and edit feature details
	Delete a feature
	Create a new feature
	Move features around
	Configuration

	Decision log
	Meeting templates
	Student meetings
	Supervisor meetings
	Customer meetings
	Usability test meetings

	Project assignment
	Group contract
	Results From Sprint Retrospectives
	Sprint 1
	Sprint 2
	Sprint 3
	Sprint 4
	Sprint 5

